search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
47


provided this same separation in 11 seconds in HILIC mode (Rs 1.04). Interestingly, the unusual exclusion effect occasionally seen in teicoplanin CSPs caused by repulsion of the negatively charged carboxylic acid group on the phase with a negatively charged analyte, is absent in this phase.


Conclusions


Further developments in the application of SPP and FPP CSPs for free amino acid separations will be of great interest. It is likely that instrument optimisation is likely to be as important as selectivity optimisation. Methods may be affected more by injection cycle time than particle efficiencies since these may be longer than the actual separation time. It will also be very critical to use low dispersion injection needles, low volume detector flow cells and low internal diameter connection tubing to make the most out of these developments.


Fast separations such as these could also be useful in preparative chromatography, with the potential for reduced solvent consumption. Perhaps most importantly, the speed of separation is so fast that on-line monitoring of asymmetric synthesis becomes feasible.


References


1. Pisarewicz K, Mora D, Pflueger FC, Fields GB, and Marí F JACS, 127 (17): 6207–15 (2005)


2. van Heijenoort J, Glycobiology. 11 (3): 25R–36R, (2001)


3. Snyder, S.H., Proc Natl Acad Sci, 96, 13409 (1999)


4. Wolosker H, Dumin E, Balan L, Foltyn V.N. FEBS Journal, 275 (14), 3514–26 (2008).


5. Armstrong, D.W., Lee, J.T., Chang, L. W., Tetrahedron: Asymmetry 9, 2043-2064 (1998)


6. Armstrong, D.W, He, L., Yu, Lee, J. T., Liu, Y., Tetrahedron: Asymmetry 10, 37- 60 (1999)


7. Zhang, B., Soukup, R., Armstrong, D.W., J. Chrom. A., 1053, 89-99 (2004)


8. Koehbach, J., Gruber, C.W.,Becker, C., Kreil D.P., Jilek, A., J. Proteome Res. 2016, 15, 1487−1496.


9. Fujii, N., Ishii, N., Takita, M., Akaboshi, M., Kodama, M., Mech Aging Dev., 107, 347-358, (1999)


10. Konya, Y., Bamba, T. and Fukusaki, E., J. Bioscience and Bioengineering, 121 (3), 349-353, 2016


11. Davankov, V. A.; Rogozhin, S. V., J. Chrom. A. 60, 284-312 (1971)


12. Marchelli, R., Corradini, R., Bertuzzi, T., Galaverna, G., Dossena, A., Gasparrini, F., Galli, B., Villani, C., Misiti, D., Chirality, 8(6), 452-461 (1996)


13. Pirkle, W.H., Hyun, M.H., J. Org. Chem., 49 (17), 3043–3046 (1984)


14. Turner, C., Wu, H, Y., Swaminathan, R.N., Bird, S., Barnfield, P., Dalton, R.N. J Inherited Metabolic Diseases, 26, Suppl 2, 197 (2003)


15. Chang, C.D., Armstrong, D.W., Trends in Anal. Chem. (TRAC), 12(4), 144-153 (1993)


16. Girod, M., Chankvetadze, B., Blaschke, G., J. Chromatogr. A, 887, 439 (2000)


17. Zhang, T., Holder, E., Franco, P and Lindner, W., J. Sep. Sci. 37, 1237–1247 (2014)


18. A. Berthod, Y. Liu, C. Bagwell, D. W. Armstrong, J. Chrom. A, 731, 123-137 (1996)


19. D’Acquarica, I., Gasparrini, F., Misiti, D., Pierini, M., Villani, C. Adv. Chromatogr. 46, 109–173 (2008)


20. Berthod, A., Chen, X., Kullman, J.P., Armstrong, D.W., Gasparrini, F., D’Acquarica, I., Villani, C., Carotti, A., Anal. Chem., 72, 1767-1780 (2000


21. Hoffmann, C. V., Pell, R., Lämmerhofer, M., Lindner, W., Anal. Chem., 80, 8780–8789 (2008)


22. Zhang, T., Holder, E., Heym, J. M., Franco, P., Kohout,M., Frühauf, P., Lämmerhofer, M., Lindner, W., Poster at HPLC Symposium, (June 2012, Anaheim, USA)


23. Ilisz, I., Nóra Grecsó, N., Aranyi, A., Suchotin, P., Tymecka, D., Wilenska, B., Misicka,A., Fülöpd, F., Lindner, W., and Péter, A., J Chrom A, 1334, 44–54 (2014)


24. Bell, D.S, LCGC North America, Column Watch, 33 (2015)


25. Henry, D. Technical Note, Supelco. Keys to High Speed HPLC with Isocratic Mobile Phases


26. Application Note 183 Supelco, Improving HPLC Performance: Relationship between particle size, column efficiency and column pressure


27. Fekete, S. and Guillarme, D., LCGC NorthAm. 32, 2–12 (2014)


28. Sciascera, L., Ismail, O., Ciogli, A., Kotoni, D., Cavazzini, A., Botta, L., Szczerba, T., Kocergin, J., Villani, C., Gasparrini,F. J. Chromatogr. A. 1383, 160–168(2015)


29. de Villiers, A., Lauer, H., Szucs, R., Goodall, S. and Sandra, P., J.Chromatogr. A 2006, 1113, 84−91.


30. Patel, D.C., Breitbach, Z.S., Wahab, M.F., Barhate,C.L., and Armstrong, D.W. Anal Chem, 87, 9137-9148 (2015)


31. Gritti, F., Bell, D.S., Guiochon, G. J. Chromatogr. A1355, 179–192 (2014)


32. Ismail, O.H., Ciogli, A., Villani, C., De Martino, M., Pierini, M., Cavazzini,A., Bell, D.S and Gasparrini,F. J. Chromat A, 1427 , 55–68 (2016)


33. Barhate, C.L., Waha, M.F., Breitbach, Z.S., Bell, D.S. and Armstrong, D.W. Anal, Chim. Acta 898, 128-137 (2015)


New Conductivity and pH Monitor Works with Virtually Any Chromatography System


Gilson has expanded its chromatography product line with the launch of the VERITY® 1810 Conductivity and pH Monitor, an easy-to-use, compact device that can be integrated with virtually any chromatography system.


Users simply plug the conductivity flow cell of the monitor into the fluid path and power up the monitor by connecting to a PC via the USB cable. From there, the system runs itself, drawing on Gilson’s established automation technology to monitor gradient formation. Researchers can record data from the monitor either through TRILUTION® LC, Gilson’s chromatography software, or through analogue output to a third-party device, which allows the monitor to work with virtually any chromatography system. Further, when the monitor is run with the TRILUTION LC software, the sample can be desalted automatically, which is especially important in manufacturing where efficiency is paramount.


Ease-of-use also extends to Gilson’s conductivity flow cells themselves. Gilson pre-calibrates each flow cell so they can be used out of the box at both room temperature (25ºC) and refrigerated conditions (4ºC). The flow cells can be exchanged between units without impacting data integrity, allowing users to focus on their science, rather than instrument calibration. An optional pH flow cell is available for real-time pH monitoring, which when combined with conductivity monitoring, can save time and provide users with more information to aid their separations.


The microplate-sized footprint of the VERITY 1810 Conductivity and pH Monitor takes up minimal bench space. A front panel display provides a readout of conductivity, pH, and temperature readings in real-time. No special software is required for instrument control.


Visit: www.gilson.com or email: asia-mea@gilson.com.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60