This page contains a Flash digital edition of a book.
PREVIEW EXHIBITOR Getting tough with electrolytic tilt sensors


Despite the growth in the use of MEMS tilt sensors, in harsh applications electrolytic tilt sensors can provide significant benefits, as Jeff Gurr, electromechanical product specialist at Charcroft Electronics, explains


M


EMS tilt sensors are smaller and lower cost than electrolytic tilt


sensors, so it would not be surprising to expect the rise in MEMS technology to signal the end of the electrolytic alternatives. The reality, however, is that in harsh applications the balance is firmly tipped in favour of electrolytic tilt sensors. In applications where drift and repeatability are of crucial importance and in which product lifetimes are measured in years, not months, then electrolytic tilt sensing can often be the preferred technology.


THE COST OF HIGH REPEATABILITY The factors which are most important for measuring the performance of a tilt sensor are drift, repeatability and environmental durability. There are considerable differences in


the repeatability offered by off-the-shelf MEMS and electrolytic tilt sensors. Even low-cost off-the-shelf electrolytics can deliver repeatability of five arc-seconds, and high-end versions can achieve sub-arc-second repeatability. In comparison, this level of performance is only typically available on the highest- cost MEMS sensors and the need for additional support electronics adds to the total bill-of-materials cost. For example, a metal dual-axis ±65° electrolytic sensor generally costs under $5, whereas achieving similar performance with a MEMS device and its supporting electronics can cost between three- and-a-half to five times this price.


THE COST OF CONTROLLING VOLTAGE VARIATIONS Cost is also a factor in controlling drift which causes readings to become increasingly inaccurate over time, necessitating frequent re-calibration. To achieve optimum performance, MEMS sensors need a stable voltage supply over both time and temperature, with high-repeatability versions needing control within the microvolt range. This usually requires the use of high-precision, and therefore high-cost, power supplies. In comparison, the ratiometric measurement used by electrolytic tilt sensors makes these devices immune to variations in the voltage supply and allows for the use of lower cost power supplies.


S14


LONGEVITY AND DURABILITY Another factor which can significantly affect sensor performance is environmental durability. Here, MEMS sensors can be constrained by their operating temperature range and by their packaging options. Off-the-shelf electrolytic tilt sensors cover an operating temperature range from -60˚C to 120˚C and are hermetically sealed to enable them to withstand humidity and other environmental conditions. The fact that electrolytic sensors have no moving parts also helps them to handle vibration and shock to ensure a long operational lifetime. Packaging and mounting options


for electrolytic tilt sensors include a patented metal can for soldering directly onto a PCB, or ceramic versions with mounting holes for easier fixing into a rugged assembly. They can even be mounted remotely without the need for a custom PCB to carry the support electronics which would be needed by a MEMS sensor. Encapsulation can add a stable base with minimal thermal changes to ensure high repeatability and optimum performance over temperature.


A SIMPLE DESIGN PROCESS Like MEMS sensors, electrolytic tilt sensors


Jeff Gurr


can be mounted onto a circuit board, but rather than needing complex support electronics, all they need is a power source; a microcontroller with two digital ports and an A/D converter; and a few passive components. Simply reading an analogue voltage provides the ratiometric measurements which are proportional to the angle being measured. Because the reading is ratiometric, a


perfectly stable voltage is not required if the A/D reference voltage is the same as that of the tilt sensor drive voltage. The electronics are further simplified by the electrolytic sensor’s ability to operate at any


voltage and its low power requirements.


THE FUTURE OF ELECTROLYTIC TILT SENSORS Despite the fact that electrolytic sensors from the 1960s are still in production, manufacturers such as Fredericks continue to make innovations in this technology. Glass tilt sensors based on thick-film


technology, for example, will measure with sub-arc second repeatability at significantly lower cost, whilst ceramic sensors will operate at even higher temperatures. In addition, the latest generation of metal sensors will deliver high repeatability with larger measuring angles and a smaller size.


Fredericks TrueTILT narrow range electrolytic sensors


Charcroft Electronics www.charcroft.com


Electrolytic tilt sensors and other components for sensing flow, pressure, position and temperature in harsh environments, will be featured on Charcroft Electronics’ stand, C11, at Sensors & Instrumentation 2016


SEPTEMBER 2016 | SUPPLEMENT: SENSORS & INSTRUMENTATION 2016 


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270