Scanner welding of an automotive car door using Trumpf’s program- mable focusing optics PFO 3D. The
yellow fi ber-optic cable connects to a solid-state TruDisk laser.
“Fiber-delivered lasers are now useful on larger and higher-volume parts,” he said, not- ing that automated welding applications that do not currently use lasers should consider them given the advances. “Most of the things you need to do for automated welding,” he said, “you will need to do to be successful at using a laser.” However, as an autogenous process with
no fi ller material, laser-only welding has been limited to those thin-walled and tight- tolerance applications. Laser-only welding is currently limited to applications where joint tolerances allow no more than about 0.1 mm of gap variation. In a number of ways that is changing. One way is with hybrid welding. Companies like ESAB are using their expertise in gas metal arc welding (GMAW)—think MIG—com- bined with fi ber-delivered laser energy to create the best of both in these hybrid systems. The addition of GMAW means using an arc to add-in fi ller material from a wire. Welds in thicker materials benefi t from the precise, deep penetration heat source of lasers, and the combined system is faster and more forgiving. “With a fi ller metal added, this allows you to start ap- plying laser welding to joint fi t-ups and joint designs that are not optimal,” Hansen said. Modest gaps can be bridged. Certain amounts of surface contamina- tion are tolerable and weld chemistry and mechani- cal properties can be manipulated. Designers can also add fi llets and bead reinforcements for greater strength and to resist fatigue failures. “This means laser welding can be applied in more conventional applications,” he said.
ESAB’s Hybrio is such a hybrid system, combining a solid-state laser with GMAW. It welds at 3–10 times the speed of conventional processes, with 80–90% less heat input, according to the company. Its wider bead bridges gaps that are four times wider than a conventional laser-only process. Just as importantly, an adaptive control system monitors the weld joint in real time, adjusting for joint gaps and mismatches and further broadening the process window to handle gaps up to 1.5 mm. New applications now opened to laser welding include shipbuilding, construction, pipeline supplies (such as oil-country tubular goods), heavy equipment/off-highway, and railroad equip- ment.
In terms of hybrid welding, Jim Hurley, southeast regional sales manager for Trumpf Inc. Laser Technol- ogy Center (Plymouth, MI), also pointed out that the laser not only saves time, but material as well. Many weld joints prepared for welding are V-grooves, and a wide joint is needed for traditional GMAW to get heat energy to the bottom. With laser’s deep penetra-
MfgEngMedia.com LF27
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208