This page contains a Flash digital edition of a book.
ventional methods include shorter processing time, less expensive fi xtures, changes to hole diameters without changing “electrodes” or other “drill bits,” changes to hole locations by programming, and the ability to drill hard and nonconductive materials. Disadvantages of laser processing include pos- sible thermal damage to material, the need for post drill processes, potentially harmful vapors and initial capital equipment costs. Like any material removal process, optimization studies must be conducted to achieve the correct balance of cycle time, part quality, and part cost. The studies should focus on key process parameters for the material, and their effect on key quality char- acteristics of the part. Typically, wavelength, pulse width, energy/pulse and focal properties will have the biggest infl uence on hole quality. Optimal cycle time can be achieved by adjusting pulse repetition rate with two important caveats. The allowable adjustment is fi nite, in that pulse repetition rate will change the laser average power, and the beam quality of many lasers can change negatively with increased pulsing. Secondly, pulse repetition rate can change the sub- strate temperature through sidewall conduction and cause degradation in hole quality and time. In addition to the primary laser characteristics, there are multiple factors to consider for achieving a stable process. Beam quality, in conjunction with lens focal length and input beam diameter, will determine the focal spot size, and the depth of focus, essentially the “drill bit” diameter and length. Assist gases are also used for multiple reasons. One primary reason is to protect the lens or cover slide from ejected matter, but gas can also infl uence the drilling rate. Gases can also assist in removal (O2) or help reduce oxides (N). Pressure/fl ow will have to be balanced to protect the lens without suppressing the expelled material. Gases should be free of any moisture. Laser drilling has been demonstrated at aspect ratios (depth/diameter) of greater than 20:1.


Future Technological Development By Silke Pfl ueger, General Manager— Direct Photonics


Two main drivers are pushing the technologi-


cal development of lasers for material processing: Improving sources for traditional applications such as metal welding and cutting, and developing new sources for new applications, such as glass cutting. To increase the market for lasers in cutting and welding, laser developers are reinventing the way the radiation is generated. Modern laser sources are very reliable machines, used in production lines around the world. Size, effi ciency, and price are the main drivers for new laser development at 1 µm, with direct-diode lasers pushing into high brightness appli- cations. As an example of how specialized lasers are becoming, consider this: To enable a wider range of material to be cut, fi ber and disk lasers were devel- oped that have switchable beam quality to cut both thin and thick metal effi ciently. Ultrafast lasers are an example of new technolo- gies opening up completely new applications for lasers. They have now become production tools, cutting Gorilla Glass and sapphire in a manufacturing environment. Reliability, ease of use and a reduction in price are the main development drivers, ultimately enabling more applications and markets.


For more information about industrial laser use, visit our laser channel at MfgEngMedia.com


MfgEngMedia.com LF15


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208