This page contains a Flash digital edition of a book.
Micromachining By Ronald D. Schaeffer, PhD, CEO—PhotoMachining Inc., and Neil S. Ball, President—Directed Light Inc. Laser micromachining involves the machining of small features into various materials using lasers through material removal. By “small,” we defi ne the feature size as being less than 1 mm and the material thickness as being less than 1 mm, and both are usu- ally a lot less.


Lasers are used for a variety of reasons. First, the noncontact nature minimizes the risk of damage to the material and does not introduce tool wear. The feature resolution when using UV lasers is unmatched by any traditional machining technology, with the smallest attainable features on the order of a few microns, using UV lasers and high-quality optics. By choosing the correct wavelength and energy density on target, selective material removal can even be achieved. Finally, the use of lasers provides great fl ex- ibility especially in the prototyping and R&D stages. For micromachining applications the key to clean


and low taper processing is peak power intensity, which is energy density per unit area. In other words, the best results are obtained when using lasers with high-pulse energy and short-pulse length and where the laser spot is focused to a small size. This is one of the reasons that USP (ultra- short pulse, meaning picosecond and femtosecond lasers) are becoming very popular—the short-pulse length greatly increases peak power at the target, even with relatively low pulse energy. Figure No. 1 shows a graph of wavelength vs. pulse length where all of the microma- chining applications are on the lower half of the Y axis, where longer pulse lengths are used primarily for applications requir- ing a lot of heat on target. Armed with a variety of lasers with


LF10 MfgEngMedia.com


wavelengths from the IR through the UV, and pulse lengths from milliseconds to femtoseconds, numerous applications can be addressed in the fi elds of automo- tive manufacturing, semiconductors, microelectron- ics, medical devices, alternative energy, aerospace and defense. All materials can be addressed by using the right laser and optical setup with the stipulation that maximum material thickness is somewhat de- pendent on the output power of the laser, especially when speed/cost are an issue. Hard/brittle materi- als like ceramics and glass have a higher ablation threshold and therefore require higher energy density on target to achieve material removal, while soft materials like polymers generally require less energy density on target to affect clean removal. For the same laser and optical setup, much greater material thick- ness can be processed with soft materials than with hard. The factor of overriding importance, however, is absorption. The more photons a material absorbs at a particular wavelength and optical setup, the better the processing will be.


Figure No. 1: Courtesy of PhotoMachining Inc.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208