This page contains a Flash digital edition of a book.
geometrical rules. These methods work well for many prac- tical applications. However, the applications of microstruc- ture parameters, obtained from the optical image of random two-dimensional planes, have significant limitations.


The first and most important limitation is that the obtained two-dimensional data does not represent the real three-di- mensional structure parameters. Another limitation is due to the optical imaging technique, especially for small particles (less than 1-2 µm). In ductile iron for example, observed par- ticles with less light reflection than the metal matrix repre- sent random sections of the graphite nodules and the other structural features, such as micro-porosity and non-metallic inclusions. Because optical imaging does not separate these features, the optical data is overloaded by small particles


A combination of automated SEM/EDX analysis and the 2D-3D conversion methods was suggested8


(less than 5-10 µm) counted as graphite. Automated SEM/ EDX analysis separates the carbon containing phase from non-metallic inclusions and porosity by applying a special rule, for example, “Graphite – if C>30%”. The tests (Fig. 5) showed that the “noise” from non-metallic inclusions in- creased with decreasing the total graphite nodule number per unit area.8


to ana-


lyze the actual three-dimensional graphite nodule distribu- tion in ductile iron castings produced by different processes. The suggested 2D-3D converter is based on the assumption that any 3D graphite nodule distribution in casting (3Dcasting is a combination of several normal distributions ∑3Dn


) (n=12


in this study). These arbitrarily chosen normal distributions were virtually 2D-cut using stereoscopy rule, summarized


(a)


(b)


(c)


Figure 2. Different types of non-metallic inclusions located inside graphite nodules. International Journal of Metalcasting/Volume 8, Issue 2, 2014 43


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97