This page contains a Flash digital edition of a book.
Table 3. Dynamic Fracture Toughness KId EN-GJS-400LS at -40°C.


of


4. BAM–GGR 007, Leitlinie zur Verwendung von Gusseisen mit Kugelgraphit für Transport- und Lagerbehälter für radioaktive Stoffe, Rev. 0, BAM Berlin (June 2002).


5. ASME Code Case N-670, “Use of Ductile Cast Iron Conforming to ASTM A 874/A 874M-98 or JIS G 5504-1992 for Transport Containments,” ASME Section III, Division 3, BC01-810 (June 2005).


6. Guideline for the Certification of Wind Turbines, Germanischer Lloyd Industrial Services GmbH, Hamburg, edition (2010).


gral concept can be converted using equation (1) when plane strain is assumed.


Independent from loading rate, fracture toughness values KI and crack initiation toughness values Ji


or JIc of the J-inte- Eqn. 1 with E being Young’s modulus and ν being Poisson’s ratio.


Comprehensive information on the procedure, analysis and results of fracture mechanics DCI large scale testing includ- ing further material data and statistical analyses is provided by an article in Engineering Fracture Mechanics.26


Conclusions


Ductile cast iron materials substantially change their de- formation behavior (strength and ductility) as well as their damage and fracture behavior from ductile to brittle by in- creasing loading rate, decreasing temperature, increasing share of pearlite and/or increasing stress triaxiality. There- fore, the corresponding experimental measuring techniques and analysis concepts have to be chosen and adapted with deliberation when a valuable quantification of fracture toughness is intended. A major lesson to be learned is that fracture toughness data of DCI should always be discussed, reported and used in correlation with microstructural pa- rameters.


REFERENCES


1. Pusch, G., Bruchmechanische Sicherheitskonzepte und ihre Anwendung auf Gusseisenwerkstoffe, konstruieren + giessen 17 (1992) 3, pp. 29-35; 17 (1992) 4, pp. 4-12; 18 (1993) 1, pp. 4-11 as well as 18 (1993) 2, pp. 4-10.


2. Baer, W., Häcker, R., Werkstoffcharakterisierung von Gusseisenwerkstoffen mit Kugelgraphit - dynamische Zugversuche unter dem Aspekt der Bauteilsicherheitsbewertung, MP Materials Testing 47, 1-2, pp. 34-44 (2005).


3. SINTAP, Structural Integrity Assessment Procedure, Final Report, EU-Project BE 95-1462, Brussels: Brite Euram Programme (1999).


International Journal of Metalcasting/Volume 8, Issue 2, 2014


7. FKM-Richtlinie Bruchmechanischer Festigkeitsnach- weis für Maschinenbauteile, Forschungskuratorium Maschinenbau, Frankfurt/Main, 3rd edition (2006).


8. DVS-Merkblatt 2401, Bruchmechanische Bewertung von Fehlern in Schweißverbindungen, DVS Verlag, Düsseldorf (2004).


9. ISO 12135, “Metallic materials - Unified method of test for the determination of quasistatic fracture toughness,” ISO, Switzerland (2002).


10. ASTM E1820, “Standard Test Method for Measurement of Fracture Toughness,” ASTM International, West Conshohocken, PA (2011).


11. ASTM E399, “Standard Test Method for Linear- Elastic Plane-Strain Fracture Toughness KIc


of


Metallic Materials,” ASTM International, West Conshohocken, PA (2012).


12. ESIS P2, “Procedure for determining the fracture behavior of materials,” European Structural Integrity Society, Delft, The Netherlands (1992).


13. ISO/DIS 26843, “Metallic Materials – Measurement of fracture toughness at impact loading rates using precracked Charpy-type test pieces,” ISO, Switzerland (July 2012).


14. ASTM E2298, Standard Test Method for Instrumented Impact Testing of Metallic Materials, ASTM International, West Conshohocken, PA (2009).


15. ISO 14556 and Amendment 1, “Steel – Charpy V-notch pendulum impact test – Instrumented test method; Amendment 1: Annex D – Instrumented Charpy V-notch pendulum impact test of sub-size test pieces,” ISO Switzerland (2000 and 2006).


16. Baer, W., Experimentelle Ermittlung dynamischer Bruchzähigkeitswerte von ferritischem Gusseisen mit Kugelgraphit - Normung und aktuelle Datenbasis; Conference Werkstoffprüfung - Fortschritte der Kennwertermittlung für Forschung und Praxis, ed. H. Frenz and W. Grellmann, DVM publishers, Berlin, pp. 275-282 (2008).


17. ASTM E647, “Standard Test Method for Measurement of Fatigue Crack Growth Rates,” ASTM International, West Conshohocken, PA (2013).


18. ISO 12108, “Metallic materials - Fatigue testing - Fatigue crack growth method,” ISO, Switzerland, (2012).


19. Hübner, P., Schlosser, H., Pusch, G., Biermann, H., “Load history effects in ductile cast iron for wind


33


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97