This page contains a Flash digital edition of a book.
SiC transistors  industry


Bipolar SiC transistors enhance electrical power conversion


Today’s switch-mode power converters restrict the efficiency of solar systems and hybrid electric vehicles. One way to lift this barrier, while cutting the bill of materials at the system level, is to replace the silicon transistors with SiC bipolar equivalents that can deliver currents of up to 50A, argues Fairchild’s Anders Lindgren.


T


ransistors built from SiC are set to play a key role in improving the efficiency, while cutting size and


weight, of various electrical products serving a diverse range of applications. These wide bandgap semiconductor devices will probably first make an impact in the renewable energy sector, increasing the efficiency of solar inverters and slashing their bill of materials, thanks to a reduction in heat sink requirements and size of the filter inductances.


SiC transistors also promise to improve the driving range of hybrid electric vehicles, by cutting the size and weight of the hybrid inverter systems. And these robust transistors are also attracting the attention of engineers in the geothermal, oil and gas industries, who are searching for devices that can operate at really high temperatures. SiC transistors will also enable down-hole tools to operate at even further depths, allowing for a greater and more widespread use of geothermal energy.


At TranSiC, now part of Fairchild Semiconductor, we are pioneering the development of bipolar SiC technology that can serve this broad range of applications. Our efforts account for the differing requirements of all these applications that look to exploit different properties of SiC. Industrial applications, such as PV inverters, can mainly benefit from the high efficiency of SiC transistors, and their ability to operate at very high switching frequencies. In comparison, for down-hole applications, the higher operational temperatures of a SiC bipolar transistors is its primary asset. However, efficiency is an important property here as well, since losses contribute to additional device heating.


Figure 1 I-V-forward characteristics of the SiC BJT compared to the silicon IGBT. The BJT’s collector current, IC


the collector-emitter voltage at a range of base currents, IB


, is plotted as a function of , ranging


from 250 mA to 1 A. The dotted red line represents the same parameters for the IGBT


To cater for these differences, we have embarked on a two-pronged product development program. One of the directions that we have taken services the need for high efficiency and low cost within the industrial market, with components packaged in plastic TO-247 packages for use up to 175 °C.


The other approach focuses on high temperature and has yielded devices in TO-258 metal packages operating at junction temperatures of up to 250 °C. All of these applications are based on switch-mode power conversion.


June 2011 www.compoundsemiconductor.net 21


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207