This page contains a Flash digital edition of a book.
Lasers ♦ news digest


delivering higher performance across a wider wavelength range and brightness — and we’ve also developed a new family member for the BPM/ BLM mini-cooler series that represents the smallest footprint and highest CW power level of any competitive solution.”


The new BLM component, the BLM9xx/10xx is claimed to represent the industry’s smallest footprint and highest power conductively cooled product. This laser diode delivers up to 120W at the 910 to 1070nm wavelength range and replaces micro- channel coolers in horizontal configurations for DPSS pumping and direct diode applications.


To ensure easy integration, the new BLM9xx/10xx replaces soldering or wire bonding with mechanical electrical connection and mounting.


The OPC880, the new OPC family member is a 60W CW low filling factor bar at the 875nm to 890nm wavelength range and will be used in Oclaro’s own Prosario collimated modules, fibre coupled packages and will also be available as a passively cooled bar to Oclaro customers. By expanding the wavelength range of the existing OPC family, the new OPC880 enables Oclaro to enter the new and growing 880nm neodymium-YAG and neodymium-vanadate pumping market.


Researchers conjure up nanocavity super efficient laser


The GaAs/InAs laser is suited to optical communication systems and could herald a new era in low-energy data interconnects that communicate with light as well as electrons.


In the push towards ever-smaller and ever-faster data transmission technology, a team of Stanford electrical engineers has produced a nanoscale laser that they claim is much faster and vastly more energy efficient than anything available today.


To the Silicon Valley mantra of “faster, smaller” semiconductors, you can now add “more efficient.” The electrical data interconnections inside the computers of America’s massive datacentres consume huge amounts of electricity, and there


is a technological drive afoot to reduce that consumption.


To that end, Stanford researchers have unveiled a tiny, highly efficient semiconductor laser that could herald a new era in low-energy data interconnects that communicate with light as well as electrons.


The wafer’s holes ‘act like a hall of mirrors to reflect photons back toward the center of the laser,’ said Jelena Vuckovic, an associate professor of electrical engineering. (Courtesy of Jelena Vuckovic : Wafer with holes)


“Today’s electrical data transmission circuits require a lot of energy to transmit a bit of information and are, relatively speaking, slow,” said Jelena Vuckovic, an associate professor of electrical engineering at Stanford working on the new generation of nanoscale lasers.


She and her team, including Stanford graduate students Bryan Ellis and Gary Shambat, in collaboration with the research groups of James Harris at Stanford and Eugene Haller at the University of California-Berkeley, introduced their laser in a paper just published in Nature Photonics.


Vuckovic is working on a type of data transmitter known as a photonic-crystal laser. These lasers are particularly promising, not just for their speed and size, but because they operate at low thresholds and don’t use much energy.


“We’ve produced a nanoscale optical data transmitter, a laser that uses 1,000 times less energy and is 10 times faster than the very best laser technologies in commercial use today,” said the professor. “Better yet, we believe we can


June 2011 www.compoundsemiconductor.net 147


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207