This page contains a Flash digital edition of a book.
news digest ♦ RF Electronics


positive response to our GaN roadmap presentation at CS Europe earlier this year, from customers and partners, as well as other semiconductor companies – in large part due to the economies of scale we’re able to bring to the equation. As we release new products based on GaN, we’ll also be working with our partners to build a European supply chain that optimizes costs at every step in the value chain, and continue to offer our customers choice when it comes to selecting the best alternatives – LDMOS or GaN – for high-efficiency applications,” commented John Croteau, senior vice president and general manager, high performance RF, NXP Semiconductors.


NXP has developed its high-frequency, high- power GaN process technology in collaboration with United Monolithic Semiconductors and the Fraunhofer Institute for Applied Solid State Physics. The firm is now positioned as one of the largest semiconductor company to offer both LDMOS and GaN solutions.


NXP’s GaN devices are manufactured on SiC substrates for enhanced RF and thermal performance. Target end-user applications include cellular communications, wideband amplifiers, ISM, PMR, radar, avionics, RF lighting, medical, CATV and digital transmitters for cellular and broadcast.


With its high power densities, GaN has the potential to expand into applications such as high power broadcast applications, where solid-state power amplifiers (PAs) built with vacuum tubes are still the norm. While most base station PAs today are limited to specific applications, this new GaN process technology supports a roadmap towards a “universal transmitter” that can be applied in multiple systems and frequencies, simplifying transmitter production and logistics, and allowing operators to switch between frequency bands to instantly meet demands in a base station’s coverage area.


“As GaN continues to gain traction, the entry of major semiconductor companies such as NXP helps to validate GaN as a ‘technology of choice’ for RF power semiconductors, and will help to accelerate broader adoption,” said ABI Research director Lance Wilson.


“We were overwhelmed by the extraordinarily 122 www.compoundsemiconductor.net June 2011


Engineering samples of NXP’s first GaN PAs are available immediately and are expected to be available for volume production at the end of 2011.


TriQuint introduces base station RFICs with unique integrated protections


The firm’s experts will be showing new ways to lower power consumption and prevent network system ESD, RF over-drive & DC over-voltage failures at IMS 2011.


TriQuint Semiconductor, an RF solutions supplier and technology innovator, has released the first members in a new family of integrated RF products that lower power consumption while protecting mobile networks from disruption and service failures.


TriQuint’s newest base transceiver station (BTS) network devices join 12 other new power and filter infrastructure solutions introduced in the first half of 2011.


“We listened to our customers in developing these products,” said Vice President Brian P. Balut. “Consumer demand for smartphones and tablets means more bandwidth through the network. That leads to the requirement for greater linearity in the RF chain. At the same time, our customers want to minimise power consumption, and they want devices that withstand spikes and other stresses that may occur in the field. These two new products uniquely address all these needs.”


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207