This book includes a plain text version that is designed for high accessibility. To use this version please follow this link.
10-07/08 :: July/August 2010


nanotimes News in Brief


63


The analyzed switch unit is shaped like nanotubes consisting of fatty acid type components (left). The image in the middle shows the expected X-ray images. The image on the right shows the measured signal. © Techert / MPIbpc


I. Rajkovic, G. Busse, J. Hallmann, R. Moré, M. Petri, W. Quevedo, F. Krasniqi, A. Rudenko, T. Tschentscher, N. Stojanovic, S. Düsterer, R. Treusch, M. Tolkiehn, and S. Techert: Diffraction Properties of Periodic Lattices under Free Electron Laser Radiation, In: Physical Re- view Letters, Volume 104(2010), Issue 12, March 25, 2010, Article 12550 [4 pages], DOI:10.1103/PhysRev- Lett.104.125503:


http://dx.doi.org/10.1103/PhysRevLett.104.125503


Dr. Simone Techert, Research Team Structural Dyna- mics of (Bio) Chemical Structures at Max Planck Institute for Biophysical Chemistry, Göttingen, Germany, Phone: +49 551 201-1268.


Dr. Carmen Rotte, Public Relations at Planck Institute for Biophysical Chemistry, Göttingen, Germany, Phone: +49 551 201-1304.


Scientists at the Max Planck Institute of Quantum Optics, the LMU Munich and the University of Basel have now demonstrated a new technique for the imaging of microwave magnetic fields. As microwave field sensors, they use small clouds of ultracold atoms that had been laser-cooled to a temperature of a few millionths of a degree above absolute zero. At these temperatures, the atoms obey the laws of quantum physics. Their quantum state is very sensitive to externally applied electro- magnetic fields, which makes them ideal sensors. For the measurement, the atoms are positioned at the desired location above the microwave circuit with the help of static magnetic fields, and subse- quently the microwave field is turned on.


“The internal state of the atoms changes if a micro- wave field is applied,” Pascal Böhi explains, who co-developed the technique as part of this doctoral thesis. “We can image this change of internal state with a CCD camera with high spatial resolution. The stronger the microwave field at a given position, the faster the rate of change we observe.” A unique fea- ture of the new method is that it does not require


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83