search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
resources. Phytase has been developed to release the naturally bound-up phosphorus in plant material which is otherwise unavailable to animals. Plants store phosphorus in the form of phytate – a known anti-nutritional factor in animal diets. By including phytase in the diet, the phosphorus is released from the phytate and made available for the animal to absorb and use in growth and development. This means that instead of using large amounts of rock phosphate in diets, we can rely on the naturally occurring phosphorus in the vegetable feed raw materials. The implications are highly promising. We have successfully lessened our reliance on finite, natural mineral reserves and have enabled more precise phosphorus management, especially in respect of the release of phosphorus to the environment via manure.


Reducing environmental impact The application of manure to the land is important for soil health and crop productivity – manure is a good source of phosphorus and nitrogen, which are needed for crop growth. However, manure is also a major source of phosphorus and nitrogen release to the environment. If too much phosphorus is applied to the land via manure spreading, it can remain in the soil for years, since uptake by plants can be a relatively slow process. This means that manure has to be sparingly applied, or that more land is required to dispose of the manure, in order to ensure that soil phosphorus levels do not become too high. Excessive levels of phosphorous compromise the soil’s ability to retain it for the purposes of supporting plant growth, and the surplus phosphorous is consequently leached to the water table. Where there is sufficient phosphorus in the soil, continuing to apply manure would further exacerbate the issue. Similarly, if the nitrogen content of the manure is high, then where too much manure is applied per hectare this can lead to significant nitrate run-off and leaching to the aquatic environment. In some parts of the world, this has become a major cause of freshwater quality issues. Loss of phosphorus to freshwater systems also leads to eutrophication and a greater frequency of algal blooms, some of which can be toxic. This is a major sustainability issue and has been highlighted by numerous authorities as a boundary that has been crossed in many geographies. Protecting and improving our precious freshwater reserves is a focus area for many governments and has led to strict policies on rates of manure application to land, such as those in the EU that are governed by the EU Commission Nitrates Directive. Such application rates and the availability of land become a key limiting factor to biomass holding and consequent farm size. Using phytase in animal diets has enabled more precise phosphorus management, and in many cases less land is consequently needed for manure application. This is also true in the case of protease enzymes such as ProAct. For example, studies have shown that


DSM’s Ronozyme®


when using this protease in a broiler diet, the apparent digestibility of protein is significantly improved, thereby enabling the crude protein content of the diet to be reduced by up to 8% while maintaining growth performance. Not only does this have a significant saving on crude


PAGE 40 SEPTEMBER/OCTOBER 2019 FEED COMPOUNDER


protein resources and crop land use, it also leads to less ammonia production and a 35% reduction in the nitrogen content of manure. The consequential impacts are substantial.


In the context of growing


1 million broilers on a typical wheat-based diet, a 3% reduction in ammonia is achieved, along with approximately 3 tonnes less nitrogen in the manure. This means that to dispose of the manure, less land is required, which in this example equates to 11 hectares less (based on a maximum nitrogen application rate of 170kg N/ha). Since less land is used for manure management, the farmer can effectively increase broiler production by about 5% without increasing land use for manure application, thereby remaining within the farm’s environmental boundaries. The growth of animal production brings with it concerns over


the disposal of the subsequent manure produced and its impact on nutrient cycles. Managing manure as per best practice directives is vitally important. It is increasingly clear, however, that feed enzymes such as phytase and protease have a significant impact on the subsequent chemical composition of manure due to their action on the animals’ diet. They thus become an important tool in manure management and land use.


Enzymes: essential tools for sustainable animal production Enzymes are increasingly recognized as truly essential tools for sustainable animal production. They have a significant direct impact on improving protein and carbohydrate digestibility, thereby extracting more nutrition out of existing feedstocks, helping reduce the industry’s reliance on unsustainable soy while enabling the greater use of local feed raw materials, and are critical for sustainable phosphorus management. Moreover, the consequential impacts of dietary enzyme use on manure composition, and of more precise phosphorus and nitrogen management and land-use leading to reduced incidence of eutrophication of water resources, are also recognized as substantial components of sustainable animal production.


DSM, together with its alliance partner Novozymes, is continuing


to innovate on multiple enzyme technologies for the purpose of getting more out of our limited natural resources, enabling greater gains in animal productivity within planetary boundaries and reducing the environmental footprint of our food systems while addressing the UN Sustainable Development Goals 2, 12 and 14.


Original article published on DSM Feed Talks, May 2019


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68