Reducing the environmental impact of animal production
Predictions from the World Resources Institute indicate that world demand for animal protein will swell to 445 million tonnes per year by 2050, or by 70% compared to today. The scale of change is enormous. Even with calls for a more balanced consumption of animal protein and replacement by vegetable alternatives, demand is still likely to grow. Enabling sustainable animal production is therefore of paramount importance.
Dr. David Nickell, Vice President Sustainability at DSM Nutritional Products, Animal Nutrition & Health, outlines DSM’s approach to help tackle global demands for sustainably produced animal protein.
Increasing production while respecting planetary boundaries Demand for animal protein continues to rise unabated as the world’s population grows, driven by many reasons, not least of which is increased accessibility and affordability of meat, milk, fish and eggs. Experts from many institutions have modelled the likely scenarios of animal protein demand. The World Resources Institute predicts growth to 445 million tonnes per year by 2050 to match the demands of a population of 9.7 billion. In line with the figures published by FAO, this means growth of about 70% compared to today, yet the world’s population will grow by only 40% over the same period. Even though many populations need to raise their animal protein intake to attain a level of balanced, healthy nutrition, there are, on the other hand, populations where continued over-consumption of meat will be a major driver of growth. This growth in animal production places tremendous demands on the world’s natural resources and, as has been reported widely, will lead to increased GHG (greenhouse gas) emissions and greater environmental impacts, taking our food systems well beyond many of the planet’s boundaries. The sustainability of animal protein production is now front and centre in the minds of many, and calls for change are widespread. Making a change to more sustainable food systems is complex,
takes time, and requires transformations in dietary habits on the part of consumers. For the industry itself, it calls for an innovative
PAGE 38 SEPTEMBER/OCTOBER 2019 FEED COMPOUNDER
mindset and a willingness to adopt new technologies speedily and at scale. Increasing production of animal protein, while remaining within planetary boundaries, will require greater efficiency gains, which are typically achieved through intensification. This entails, among other things, changes to farm infrastructures, animal genetics and husbandry practices, but involves especially improved nutrition, the greater use of formulated compound feed, and subsequent handling of manure, especially in relation to nitrogen and phosphorus flows to the environment.
Land constraints and difficult choices Herein lies a problem. Increasing production levels and nutritional density of animal feed will demand greater amounts of cereals, grains and other feed raw materials. This will require in turn more land. According to FAO, the world’s land area amounts to about 13 billion hectares, of which agriculture occupies 4.9 billion hectares. Of this, only 1.4 billion hectares is currently under crop production. The remaining 3.5 billion hectares is given over to permanent pasture and meadow, much of which is unsuitable for crop production. In view of these land constraints, choices must be made. Either we must feed more human-edible grain to livestock from the land currently under cultivation (the feed versus food issue) or to avoid this, we must increase the productivity of the existing land through more productive cultivars and greater use of fertilizers (which raises concerns over
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68