search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Technology


When time is money


Hexcel’s new range of G-Vent pre-pregs solves many of the biggest challenges for composite yacht and component manufacturers... including allowing a much-accelerated production process


Hexcel is one of the world’s leading carbon fibre suppliers with a multi- billion-dollar annual turnover. Their largest research and technology centre for resin systems and adhesives is at Duxford in Cambridgeshire, UK, with strong links to a number of the UK’s leading universities. The fibre they supply is used extensively within the latest generation America’s Cup and Imoca fleets as well as within the aviation, defence, energy and automotive industries, and naturally when a company with such a reputation says it has developed a game-changing technology, we listen carefully. Hexcel announced the launch of


G-Vent pre-preg in March this year, and instantly solved many of the biggest complicating factors of pre-preg manufacture. An unlimited number of layers of pre-preg can now be laid on top of one another without debulking, and then do not need to be cured in an autoclave.


64 SEAHORSE


This drastically reduces the build time for thick section carbon fibre components such as foils and opens up the construction of cutting-edge composite parts to the vast majority of boatbuilders without access to a large autoclave. G-Vent also enables the building of huge ultra-high- quality carbon fibre structures that would not be commercially feasible to produce in an autoclave. G-Vent itself is a microscopically


thin layer of material integrated within the pre-preg carbon fibre that acts as a network of pathways to let the material “vent”. As the resin cures, any air trapped inside automatically leaves the composite component via these pathways, leaving a compacted composite component without the use of a high-pressure autoclave or debulking steps. The G-Vent layer weighs between two and six grams per square metre of pre-preg, but it is so efficient at removing air from


a


selection of the Ultim masts, which are all built by Lorima from Hexcel materials. Carbon fibre masts will be much easier, cheaper and quicker to produce with Hexcel’s new G-Vent technology, which eliminates the need for autoclaves and debulking


composite material that the finished product has mechanical properties matching the cutting-edge results produced using traditional carbon fibre pre-pregs with debulking and an autoclave. Stefano Beltrando is widely recognised as an industry leader in the quality control of composite parts. He is the founder and CEO of QI Composites, leaders in non- destructive-testing (NDT) within the marine industry, and currently quality control manager for the Luna Rossa America’s Cup team. QI Composites carried out independent testing of thick composite components produced using G-Vent, and the results were conclusive. ‘We evaluated the quality of thick


laminates produced with G-Vent and found that they are comparable with laminatesmade in an autoclave as per best practice in themarket. Even more impressive, they were achieved with no debulking.We noticed that


@SAMCLICKCLACK


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120