search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
The design process in detail The variable spacing of frames in Nilaya’s hull was calculated and optimised with in-houe FEA software


The Nilaya project began with a general concept developed by Nauta Design, which set the key parameters for the shipyard, the naval architects and the other key players involved. ‘We asked ourselves a very simple question,’ Nauta’s co-founder Mario Pedol explains. ‘Could we design an aluminum yacht that was much closer in terms of displacement to an equivalent carbon boat? The answer was yes, following my intuition that hull and deck are only 15 per cent of the total weight of a modern sailing yacht. This was backed by analysis of our most relevant projects from our designs.’ ‘In this process we took into account the


owners’ priorities including less noise, the strength of thematerial and the possibility of repairs around the world.We set about discovering ways tominimise the difference [between aluminiumand carbon] and to look for advantages elsewhere. Royal Huisman supported this vision with enthusiasmand accepted the challenge.’ After the concept came the detailed


naval architecture with Reichel/Pugh working alongside one of the world’s leading CFD consulting teams, Caponnetto Hueber. Giorgio Provinciali who brought about 20 years’ worth of America’s Cup


experience to the project. Top performing designs in both aluminium and carbon were made into models for tank testing. Beyond conventional CFD analysis,


the design team also conducted a sophisticated RANS code analysis – a method more commonly used to optimise the shape of submarine hulls – to predict underwater turbulence generated by the hull, keel, rudders and propellers. They then collected extensive wave data from the owners’ favourite windy cruising grounds and developed new hull shapes to run through the RANS CFD code to improve the seakeeping and motion characteristics of the yacht under sail and power. Meanwhile, the design loop for the aero


package was also under way with Reichel/ Pugh working alongside Doyle Sails and Rondal, who designed and built the yacht’s integrated sailing systems as well as her spars. ‘Bringing in the mast and sail designers early in the process has significant advantages,’ Jim Pugh says. ‘From the aero CFD side, Rondal and the sail designers shared high-quality data about sail forces and sail loads that we integrated into the hydro CFD studies of the candidate hulls. This markedly improved the quality of the CFD hull


testing and the resultant performance prediction. The mast and sail loads were then input into the hull and deck’s structural engineering.’ Nilaya’s VPP promises a level of


performance that will challenge the leading yachts on the superyacht racing circuit, with boatspeed exceeding the true wind speed on a close reach in a 10-knot breeze under mainsail and jib alone. Throughout the year-long design process


the overall plan for the yacht hardly changed, John Reichel says, except that the hull became one metre longer with the extra length distributed mostly at the ends. ‘Weight distribution is critical for assuring comfortable motion on a cruising yacht,’ he explains. ‘We gave the shipyard team a weight study early on, not just for the total but for balance and maintaining the proper centre of gravity. Royal Huisman responded with extensive Excel sheets showing the weight of every element. That’s a process typical of the highest-end racing programme construction.’ The deck plan was also developed with


Royal Huisman’s in-house 3D engineering and weight management is comprehensive and extends to lighting, insulation, and all mechanical systems


great attention to detail, ensuring that the layout works equally well for both cruising and racing. Royal Huisman built a 1:1 mock-up of the entire aft half of the yacht to fine-tune all the aspects of this dual- purpose functionality from sail controls and steering pedestals to the dining table, the seatback angles of the sun loungers and the steps from the sail-handling cockpit to the lounge area on the aft deck, leading to the bathing platform. Sightlines over the coachroof from the helm positions received critical attention and the full- scale mock-up was tilted to simulate typical heeling angles under sail in a range of conditions.


SEAHORSE 79


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124