search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Design


While many aluminum vessels have some composite parts, Nilaya is much more a hybrid


museum (the National Maritime Museum) in Amsterdam. The last yacht to bear that name was a 34-metre (112ft) full carbon sloop that combined a very high level of performance with ocean cruising capability, striking good looks and a luxurious interior. A game-changer on the superyacht racing circuit, in the 13 years since her launch that boat has won almost every race she entered… and she has done a lot of racing. It’s not surprising, then, that the new


T


Nilaya has a fair amount in common with her namesake in terms of general concept, proportions and aesthetics. She is drawn by the same design team of Reichel/Pugh and Nauta, even more


he bar was set extremely high for the 47-metre (154ft) Nilaya, Royal Huisman’s most recent yacht, which has just been Christened at Het Scheepvaart


elegant and built on a substantially larger scale, with no compromise made in her racing ambition. However, the design brief also put a greater focus on long-distance ocean cruising, with more emphasis on considerations such as impact resistance and ease of repair in remote parts of the world. Thus, despite some similarities – profile, straight bow, wide transom, twin rudders and so on – the new Nilaya is actually a significantly different beast. One key difference is the hull. Rather


than carbon, it’s mostly aluminium. But this isn’t the sort of aluminium that’s typically used in large yacht construction, it’s Alustar – a premium grade alloy with 20 per cent more tensile strength. And this is, strictly speaking, a hybrid build with a lot more carbon components and


‘Nilaya rewrites the script for high-performance superyachts’


structures than one would expect to find in an aluminium cruiser-racer, even one that is focused on high performance. Royal Huisman’s sister company Rondal is of course a world leader in marine carbon fibre fabrication and the Nilaya project benefits from the inherent synergy between them. Why not build


the whole yacht in carbon? ‘The


owners wanted a powerful performer with easy-to-helm responsiveness, basically all the good habits of their last boat but with more comfort and less noise,’ says Nigel Ingram of MCM Newport, the owners’ representative for the build. ‘Alustar is the right material for an advanced, top quality superyacht for global cruising. It deals with noise better [than carbon] and is a better choice for cruising in comfort to remote


Royal Huisman’s Featherlight is an integrated, multi-disciplinary approach focusing on weight reduction through advanced construction technology as employed by the European Space Agency





78 SEAHORSE


TOM VAN OOSSANEN


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124