search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Therapeutics


implantation of cells, these technologies can be used to convert cells already in the body by in vivo reprogramming using small molecules or transcrip- tion factors to create the desired cells fromothers in the body that are either too abundant or grow quickly. Similarly to gene therapies, however in most cases this will require the development of much finer control of the delivery to avoid adverse effects. Chondrogenix, Mogrify’s wholly-owned subsidiary, is already developing a small molecule cocktail to reverse the de-differentiation that occurs in the chondrocytes of an osteoarthritic knee,which would represent the first disease-modifying approach to this condition which affects over a third of our elderly population. Other fields in which cell therapy could expand in the future are infectious diseases. CAR-T therapies have mainly been focused on cancers, however T-cells are natu- rally also very effective at fighting infections and, unlike antibiotics, can adapt over time in the arms race of bug versus host. Could CAR-Ts be quickly tailored to fight future epidemics? Overall, despite some of the scepticism that has


arisen around cell therapy from slow development and clinical trial failures, it seems the field is mak- ing enormous progress on all the hurdles found with the development of cell therapies that provide the best possible patient outcome at a commercial scale. Ultimately, like any other complex problem, a combination of disruptive technologies will be required for cell therapies to succeed. Once achieved, cells will be able to reach their full ther- apeutic potential in endless applications, including in diseases which have long suffered a lack of any treatment andmany clinical set-backs, such as neu- rodegeneration.


DDW


Pierre-Louis Joffrin originally trained as a Biochemist and Pharmacologist at St Andrews and Oxford University before working in early stage venture investment and development at Oxford Sciences Innovation and Deep Science Ventures. He then joined the executive leadership team at Mogrify.


Drug DiscoveryWorld Summer 2019


49


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64