BOILERS, PUMPS & VALVES
PUMPS & VALVES S
SPIRAL OR CORRUGATED TUB WHICH IS BEST FOR
ATED TU BE HEA BE HE AT EX ORWASTEWATER REA ATER TREATMENT?
are easy to clean. However, it is not uncommon to have to remove 40-50 bolts just to open the unit. Once opened, the construction means that the service fluid channel contains a large number of brackets which not only give the heat exchanger its rigidity, but make cleaning difficult in sludge- to-sludge situations. There is also the issue of the expensive bespoke gaskets which are used to seal SHEs, and which need to be replaced each time the cover is refitted.
By Matt Hale, HRS Heat Exchangers P
roponents of spiral heat exchangers (sometimes known as shell and coil heat exchangers) cite the following advantages
as making them suitable for handling challenging fluids:
1. Good thermal performance, even where the temperature difference between the two materials is small;
2 . The spiral design and use of a single channel is claimed to prevent fouling and be ‘self cleaning’ 3. Compact design makes them suitable for installations where space and/or access is restricted;
4. The counter-current flow provides an effective way to recover waste heat.
Based on such claims, it would seem that spiral heat exchangers are the ideal option for high-fouling wastewater and sludge situations. However, given how frequently clients choose to replace their existing spiral heat exchangers (SHEs) with corrugated tube units, some of these claims need closer inspection.
THERMAL PERFORMANCE There is no doubt that in theory SHEs offer greater thermal efficiency than conventional smooth surface tubular designs due to their large surface area and true counter-current flow. However, this assumes that the barrier between the product and service fluids is kept clean and operates efficiently at all times. In practice, fouling frequently occurs, interfering with thermal transfer. Where the heat exchanger is used for sludge-to-sludge
60 O TOBERC 2019 | FA ORY&HANDLINGSOLI
applications, this fouling layer can create a double barrier to efficient heat transfer.
While these comparisons hold true for smooth tube heat exchangers, they do not always apply to corrugate tube heat exchangers. For example, like SHEs, the tube-in-tube HRS DTI Series is a true counter-current heat exchanger with the product flowing through the inner tube, and the service fluid flowing through the surrounding shell. The use of HRS corrugation technology increases heat transfer and operational efficiency, while also minimising fouling.
NON FOULING DESIGNS The design of SHEs can create turbulent flow inside the exchanger. In turn this is claimed to reduce the likelihood of fouling, and that where blockages do start to occur, product flow speeds up; creating a ‘scrubbing’ effect that dislodges the blockage (so-called ‘self cleaning’). This is fine in theory, but in our experience is unlikely in many real world situations, particularly where SHEs are used with sludge. In fact, when you read further into manufacturers’ brochures, ‘self cleaning’ often becomes ‘virtually no fouling and clogging’ – two very different claims.
Newer designs do not have the same support framework to separate the coils as some older models, as such structures were ideal at picking up rags and fibres from the sludge, leading to further blockages and a consequent reduction in heat exchange efficiency. As a result, manufacturers of SHEs also claim that their units
FACTORY&HANDL NGSOLUT ONS UTIONSI
Manufacturers of SHEs know that users don’t want to remove 50-odd bolts before they can clean the unit, (and have to do them all up to the correct torque again.) They also acknowledge that many materials, such as sewage sludge, require frequent cleaning. To overcome this they produce SHE models with hinged covers, which are held shut with C-clamps, so you don’t have to undo the bolts. While this type of design improves access, it increases the amount of space required for the installation and contradicts claims of SHEs being self-cleaning. By contrast, the corrugated tubular design of the HRS DTI Series reduces fouling in a number of ways. The tube-in-tube design offers much larger channel than spirals, thereby reducing blockages. The corrugated inner tube also encourages turbulence, which increases heat transfer and reduces fouling – the very reason why HRS uses corrugated tubes. The tubes within the DTI Series are easy to clean and maintain. Removable bends make the tubes very easy to access, and there are no expensive gaskets to replace.
HRS has been asked by numerous clients to replace their existing SHEs because of significant problems with fouling, maintenance and repair; all of which lead to extended periods of downtime and overall poor performance.
CHOOSING THE BEST SOLUTION In order to select the best solution it is necessary to accurately assess the physical properties of the product or sludge to be treated, as well as the service fluid, inlet and outlet temperatures and the amount of heat regeneration required (if any). When comparing specifications or quotations for different solutions – for example SHEs compared to corrugated tubes – it is important to make sure that you are comparing like-for-like and that the performance specifications are identical. You should also assess whether any gains in efficiency or lower capital cost will be offset by increased fouling or operational costs over the full life of the unit.
HRS Heat Exchangers
www.hrs-heatexchangers.com
AT EXCHANGERS ATMENT?
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90