search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Catch here


This converged network delivers a simplified installation, easy device replacement, and faster network commissioning and configuration. This results in faster software updates with simplified root cause analysis and maintenance of field-level devices.


Advantages of an Ethernet-APL solution


By converging on Ethernet-APL, the need for expensive, complex, and power-hungry gateways has been removed. This also enables a transition from the hugely fragmented fieldbus infrastructure that has created data islands where access to the data within field-level devices is limited. By removing these gateways, the cost and complexity of these legacy installations is significantly reduced and the data islands they created are removed.


Process automation applications to date have used the legacy communications standards, as shown in Table 1, which have several limitations that the new 10BASE-T1L Ethernet standard overcomes. 10BASE-T1L provides the potential to reuse some of the existing installed cables, creating significant opportunities for brownfield upgrades of process automation installations with Ethernet-APL based on the 10BASE-T1L physical layer.


Industrial


Table 1. 4 mA to 20 mA with HART® vs. Fieldbus vs. 10BASE-T1L Communications


To communicate with an Ethernet-APL enabled device, a host processor with an integrated medium access control (MAC) or an Ethernet switch with 10BASE-T1L ports is required (see Figure 2).


Figure 3. Future, seamless edge-to-cloud connectivity with Ethernet-APL and 10BASE-T1L.


New opportunities


Figure 2. Ethernet-APL field-level device data connectivity with a 10BASE-T1L PHY. Ethernet-APL cabling and network topology


The 10BASE-T1L standard does not define a specific transmission medium (cable), instead it defines a channel model (return loss and insertion loss requirements). The channel model fits well with the fieldbus type A cables already used for PROFIBUS PA and Foundation Fieldbus today; therefore, some installed 4 mA to 20 mA cables can potentially be reused with Ethernet-APL. Single twisted pair cabling has the advantages of being lower cost, smaller size, and easier to install when compared to more complex cabling.


Figure 3 shows the proposed network topology for Ethernet-APL, referred to as a trunk and spur network topology. The trunk cables can be up to 1 km in length with a PHY amplitude of 2.4 V peak and reside in Zone 1, Division 2. The spur cables can be up to 200 m in length with a PHY amplitude of 1.0 V peak and reside in Zone 0, Division 1. A power switch resides at the control level, providing Ethernet switch functionality and supplies the power to the cable (over the data lines). Field switches reside at the field level in the hazardous area and are powered from the cable. The field switches provide the Ethernet switch functionality connecting the field-level devices on the spurs to connect to the trunk and pass the power to the field-level devices. Multiple field switches are connected on a trunk cable to provide for the high numbers of field- level devices to be connected to the network.


www.cieonline.co.uk


Ethernet-APL will enable the transition to seamless field-to-cloud connected process automation installations, including hazardous locations for food and beverage, pharmaceutical, and oil and gas installations. With significantly more power available, new Ethernet-APL-enabled field devices with enhanced features and functions can be supported. These new devices will unlock rich datasets for cloud computing with powerful data analytics, driving process optimization with actionable insights. New business models for the process industry will now be possible, to deliver more complex process manufacturing flows and to create value from the new insights that are now available.


Available solutions


ADI has extended its ADI Chronous portfolio with new offerings that bring long-reach, robust, 10BASE-T1L Ethernet connectivity to process automation in support of Ethernet-APL. The new Industrial Ethernet solutions are offered in two flexible options, MAC PHY (ADIN1110) and PHY (ADIN1100). The ADIN1110 is described as enabling the industry’s lowest power system design, which simplifies retrofitting for Ethernet in field instruments, sensors, or actuators, and preserves existing investment in software and processor technology. ADI’s MAC-PHY technology provides an SPI interface to ultra low power processors without integrated MAC, to enable lower overall system power consumption. The ADIN1100 provides standard Ethernet interfaces and supports use in more complex designs such as field switch developments. ADI’s ADIN1100 and ADIN1110 10BASE-T1L solutions can transfer data over 1.7 km of single twisted pair cables and consume only 39 mW and 43 mW of power respectively. Single-pair Power over Ethernet (SPoE) or engineered power solutions combined with a 10BASE-T1L PHY or MAC-PHY provide both power and data over a single twisted pair cable.


www.analog.com Components in Electronics September 2021 19


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54