search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Industrial


Ethernet-APL: Optimization of process automation with


actionable insights By Maurice O’Brien, strategic marketing manager at Analog Devices E


thernet-APL (advanced physical layer) specifies the details of the application of Ethernet communication to sensors and actuators for the process industry and will be published under the IEC. It is based on the new 10BASE-T1L (IEEE802.3cg-2019) Ethernet physical layer standard, approved on 7 November 2019, and specifies the implementation and explosion protection methods for use in hazardous locations. The leading companies in process automation are working together under the umbrella of PROFIBUS and PROFINET International (PI), ODVA, Inc., and FieldComm Group to make Ethernet-APL work across Industrial Ethernet protocols and to accelerate its deployment.


Why is Ethernet-APL important? Ethernet-APL will change the process automation world by enabling high bandwidth, seamless


Ethernet connectivity to field devices. It solves the challenges that, to date, have limited the use of Ethernet to the field. These challenges include power, bandwidth, cabling, distance, and use in hazardous locations. By solving these challenges for both brownfield upgrades and new greenfield installations, Ethernet-APL will enable new insights that were previously unavailable, such as combining process variables, secondary parameters, and asset health feedback and seamlessly communicating them to the control layer. These new insights will awaken new possibilities for data analysis, operational insights, and productivity improvements through a converged Ethernet network from the field to the cloud (see Figure 1).


To replace 4 mA to 20 mA or fieldbus communications (Foundation Fieldbus or PROFIBUS PA) with Ethernet-APL in process automation applications, both power and data need to be provided to the sensors and actuators. The distance between field-level devices and control systems in process automation applications has been a significant challenge to existing Industrial Ethernet physical layer technologies being limited to 100 m. With distances of up to 1 km required in process automation applications, combined with the need for very low power and robust field devices suitable for use in Zone 0 (intrinsically safe) applications, a new approach to realize Ethernet physical layer technology for process automation was required. Ethernet-APL is this new approach. Ethernet-APL is based on 10BASE-T1L physical layer capability of a full-duplex, dc-balanced, point- to-point communication scheme with PAM 3 modulation at a 7.5 MBd symbol rate, 4B3T coding. It supports two amplitude modes, 2.4 V peak up to 1000 m cable and 1.0 V peak at a reduced distance. The 1.0 V peak amplitude mode means that this new physical layer technology can also be used in the environment of explosion-proof systems (Ex) and meet the strict maximum energy restrictions. 10BASE-T1L enables long distance transmission on two-wire technology of both power and data over a shielded, single twisted pair cable.


When it comes to power delivery to field devices, Ethernet-APL can deliver up to 500 mW in Zone 0 applications, compared to that of approximately 36 mW delivered by 4 mA to 20 mA systems today. In nonintrinsically safe applications, up to 60 W of power is possible depending on the cable used. With significantly more power available at the edge of the network, new field devices with enhanced features and functions can be enabled because the power limitations of 4 mA to 20 mA and fieldbus no longer apply. For example, higher performance measurement and enhanced edge processing of data is now possible with this additional power. This will unlock valuable insights about process variables that will now be made accessible via a web server running on the field-level devices (field assets), and which will ultimately drive improvements and optimizations in process flows and asset management.


Figure 1. Seamless Ethernet connectivity with Ethernet-APL in process automation. 18 September 2021 Components in Electronics


To exploit the rich dataset containing these valuable new insights, a higher bandwidth communications link is required to deliver the datasets from these new field devices across the process installation to plant-level infrastructure or up to the cloud for processing. Ethernet-APL removes the need for complex, power-hungry gateways and enables a converged Ethernet network across the information technology (IT) and operating technology (OT) domains.


www.cieonline.co.uk


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54