search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Sensor Technology


Nanusens technology is key to enabling AI to be smarter


Next generation embedded sensors gather the data that AIoT needs for mass adoption A


IoT is the fusion of the power of Artificial Intelligence and Internet of Things infrastructure (Artificial Intelligence of Things). AIoT’s goal is to


create more efficient IoT operations, improve human-machine interactions and enhance data management and analytics. Key to its success is having masses of data from sensors that the AI can process and Nanusens has announced a technology that enables sensor data to be gathered in a completely new way that it says will enable mass deployment of AIoT as it slashes the costs and size of sensors to almost nothing.


The problem at the moment is that sensors are currently manufactured on a tiny sliver of silicon, or die, by a small number of specialist companies with each sensor type being produced on a dedicated production line so it is hard to ramp up production. These are either packaged into the familiar black unit with wire connections to be mounted on a PCB or fixed beside the main chip as a bare die. Both approaches are relatively expensive and large with no current way to reduce costs and size forming a barrier to the advancement of AIoT. Described as a British pioneer of sensor technology, Nanusens is said to have solved these two problems. Its breakthrough is being able to create the sensors directly within the control chip of the device, or ASIC, as the chip is being manufactured. This means that the sensors only take up a virtually insignificant amount of space by being in the chip itself instead of taking up space by being packaged beside it. Also, many different sensors can be built into a chip to make much smarter devices with a negligible increase in costs or space taken up inside the device. Thus, Nanusens’ multi-sensor solution frees up space for more features and larger batteries to give a longer life in use. In addition, the power consumption is also dramatically reduced which helps extend the battery life even more. “Being able to include as many sensors as is required within a chip for almost no size or cost penalty is going to revolutionise the design of a whole new generation of smarter


54 November 2023 AIoT needs masses of sensor data that Nanusens embedded sensors can now provide


AIoT devices,” explained Josep Montanyà, the CEO of Nanusens and inventor of this breakthrough.


“Until now, IoT has never been able to take off as predicted because the costs of sensors were too great, the size too large, the power consumption too high and the production volumes too constrained. We are the only company to have solved not just one of these barriers but all four by at least an order of magnitude for each one. We enable masses of sensors to be deployed for almost nothing to gather the real-world analog data into the IoT network that AI needs to be effective. This is a vital role that will enable the potential of AIoT to be realised. And, naturally, we are building an extensive patent portfolio to protect our unique technology that will empower the AI and IoT revolution that is AIoT.”


Nanusens has recently proven this new technology of embedding sensors and their control circuitry with working chips that have already resulted in one license agreement and several in the pipeline. As a result, it has now started a Series A funding round.


Technology background


Nanusens says that it is the only company to have perfected the building of sensors within chips. The sensors, called MEMS or Micro Electro Mechanical Systems, are built using the standard chip manufacturing techniques, called CMOS, that are used to build the electronic circuits on chips and at the same time as the rest of the chip circuitry. This means that chips with Nanusens embedded sensors can be made in any of the many CMOS fab in virtually unlimited numbers and with the high yields


Nanusens pressure sensor with detection circuitry (right) created within the CMOS layers of an ASIC (left)


that are normal in such fabs with all the benefits of low unit costs that fab production provides.


A key new innovation by the company is development of a novel control circuit that measures the capacitance changes within the sensor to provide sensor data. Like the sensor itself, this is also a digital IP block so it can be incorporated in the floor plan of the device’s control chip, or ASIC, using standard EDA tools. This pairing for sensors and control circuitry as IP is said to be unique as no other sensor solution can be turned into an IP block and made using standard CMOS techniques within the layers of the chip structure. This also significantly reduces the complexity and bill of materials costs for an AIoT device, according to the company.


Nanusens has already built accelerometer sensors into an ASIC chip using this technology. It is developing many other different types of embedded sensors such as gyroscope, magnetometer, pressure sensor, microphone, IR imagers and gas sensor as most of these are variants on the accelerometer design. These open up many other massive markets for its embedded sensors such as smartphones, earbuds, wearables, automotive, medical equipment and aerospace, to name but a few.


www.nanusens.com Components in Electronics www.cieonline.co.uk.uk


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70