search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Power


Relay innovation enhances solar PV inverter performance


By Steve Drumm, strategic marketing manager, Omron Electronic Components Europe bv I


n recent years, solar PV inverters have seen a considerable uptick among domestic and commercial electricity users, offering a convenient way of supplementing electricity from the grid. As well as reducing energy bills, they are also a highly sustainable solution. Indeed, it is estimated that installing solar inverters in every house in the UK would provide up to 60 per cent of total electricity consumption. Moreover, based on the UK’s climate it could even potentially generate a surplus against domestic demand between the months of April and September. This makes solar PV an attractive proposition for those who are looking to make their properties more sustainable, while also reducing their energy bills. It can also help to achieve significant progress in facilitating the transition towards a greener grid. More recently, the growing adoption of electric vehicles (EV) has been a catalyst for greater interest in solar PV as an integrated power solution for EV chargers, providing additional charging capacity and greater efficiency while harnessing clean energy.


Getting the technology to a point where solar PV is effective, efficient and affordable, has required decades of innovation. Systems not only need to provide the means to safely connect and disconnect the panels as required, but also convert the DC output into the AC at the correct voltage. Relays and switches are central to the design of such systems, and relay manufacturers like Omron have not been slow to innovate and address the needs of this rapidly growing sector.


Compactness vs heat performance Heat dissipation underpins almost every facet of relay design. Heat is fundamentally bad for both the efficiency and longevity of electronic devices and components, and so the more that temperatures of components can be reduced, the better. Complicating matters is the fact that, as inverter output power and functionality increases, dissipating generated heat effectively becomes more difficult. Relays


44 November 2023


are a current switching device, and so can generate lots of heat, potentially damaging themselves and components around them. Meanwhile, solar PV inverter manufacturers require their relays to be increasingly smaller, while regulations on component and device energy performance are only becoming more stringent. If too many heat-generating components are too close together, or not adequately cooled, then this will compromise reliability and safety. As such, innovative approaches are required to squeeze every last drop of efficiency out of the system.


Reduced contact resistance In a typical relay, contact resistance is key to managing heat dissipation. Omron’s G9KA relay utilizes an especially pure form of silver as its contact material. Silver has the highest electrical conductivity and lowest contact resistance of all known metals. Indeed, silver is in fact the standard against which all other


Components in Electronics


metals are measured on these criteria. In practice, this means that the G9KA has a heat performance five to ten times greater to that of most other products on the market. The G9KA also utilizes a twin contact structure, which compared to a single contact reduces the current per contact to almost half, and in doing so generates less heat. In a single contact configuration, contacts must be a minimum of 4mm apart to achieve the required performance. With a twin structure, this gap can be reduced to 2mm, allowing the same performance in a smaller footprint due to the smaller magnetizing coil, and reduced physical space required. Each contact has high contact pressure, which when combined with low initial contact resistance, multiple connection paths and high conductivity, results in superior efficiency and performance. In turn, this allows relays to be used in more compact applications, while still accommodating an adequate contact gap.


Life in the field


Solar PV inverters typically have a lifespan of five to ten years, and in some cases up to 15 years. Relays are not a component that can be easily replaced, and so it is vital that any relay component is sufficiently robust to outlast the inverter itself, and require zero maintenance during its operational life. Standard IEC 62109 also specifies that the performance of the relay must not drift over time. This is a challenge, as solar inverters can be installed outdoors exposed to the elements all year round.


A typical inverter can go through several switching cycles in a single day, most obviously between day and night, but also during periods of shade and planned or unplanned downtime. This can add up to tens of thousands of electrical operations in a typical relay’s lifetime. Manufacturers must run rigorous testing to not only ensure its longevity, but also calculate its footprint


www.cieonline.co.uk.uk


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70