search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
CONTRACT MANUFACTURING


The Advantages & Considerations of Dispensing Thermal Interface Materials


Tim Meyer, systems design engineer at Precision Valve & Automation (PVA) explores primary considerations when selecting a TIM material


extreme, excess compression on sensitive electronics.


A


s powerful electronics shrink in size and increase in variety, thermal interface materials [TIM] for heat dissipation continue to gain importance in the manufacturing industry. A variety of methods exist for aiding this heat transfer. Gap filling pads, adhesive tapes, and dispensable gels are the most common. The primary considerations when selecting a TIM material is the thermal conductivity and dielectric strength. However, there are several considerations that should be weighed to create an efficient assembly process while still achieving optimal product performance; considerations such as assembly tolerance, compression force, cycle time, waste generation, and equipment maintenance are among the determining factors. Dispensable gels, thermal pads, and tapes all provide a variety of thermal properties but differ significantly in application techniques and mechanical performance. Pads and tapes are cut from flat sheets of raw material. Applying shapes other than square or rectangular patterns to your design often results in waste from the cutting or stamping process (Figure 2). Pads cut with uniform thickness can make it difficult to achieve a TIM bond between components of differing height. Stacked tolerances inside an electronic assembly can create issues with creating contact of the pads or, in the other


50 MAY 2021 | ELECTRONICS TODAY


Dispensable gels offer more flexibility in design geometry and tolerancing. A gel will give and flow into cavities while still retaining enough body to hold shape and maintain contact with critical components, while a precut pad, when compressed, can cause continuous stress. The nature of dispensing allows for complex geometries to be applied. Multiple layers of material may also be applied in varying heights for a single TIM section without creating excessive waste. An automated dispensing solution simplifies the application of TIM by eliminating the stamping or cutting process entirely. A variety of options are available for dispensable materials besides the obvious variance in dielectric strength and thermal conductivity. Differences in viscosity, filler density, filler particle, curing mechanism, and chemistry are all things that provide for different applications. Pre-cured, single component moisture or heat cure, and two- component materials are all available. Nearly all dispensable options are filled with aluminum oxide, otherwise known as alumina.(Al)_2 O_3 is a relatively good thermal conductor and is electrically insulating. Glass beads are also commonly used for electrical insulation. The overall conductance of the TIM is usually dependent


on the density of the Al)_2 O_3 in the mixture. (Al)_2 O_3 happens to be a particularly hard


and abrasive filler, with a Mohs hardness of ~9.0 [Diamond being 10.0]. Because of this, pumping equipment and plumbing must be carefully selected to minimise settling of this filler and to prevent abrasion to seals and moving parts. PVA designs dispensing equipment for handling material with these specific properties in mind. Pumping and dispensing equipment are carefully designed to maximise life. Moving components are constructed of materials selected for their resilience, such as tungsten carbide. Soft seals are limited in quantity and designed in such a way that they can be readily replaced without introducing significant downtime. Fluid routing and plumbing is designed to minimise back pressure to the system and reduce dead space. For example, instead of using a 90-degree fitting, which completely changes flow velocity, a sweep or bent tube fitting would be used to prevent packing of fillers.


Figure 2


Curing & handling properties Pre-cured gels remove the need for mixing or post-application curing operations. Once the material has been dispensed onto the component, it is then ready for assembly. Pre-cured materials are packaged in the same form as they will be dispensed on the product. The consistency must be flowable enough to be dispensed, but thick enough to maintain its shape on the electrical component. PVA has designed equipment for extruding the precured material at high pressure through a flexible hose to the point of dispense with a single moving ram. The 1- Gallon Pail Unloader (1GPU) uses a hydraulically driven ram to extrude the material at pressures up to 800 psi. The design takes advantage of the original packaging of the TIM gel and is also available in a 5-Gallon configuration. The ram’s only wearable component is a gasket which can be easily replaced between pails. Alternative


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74