ENCLOSURES
EMC AND ELECTRONIC ENCLOSURE DESIGN
Kemtron explores some design considerations on a range of EMC gaskets and components for enclosures and PCB design
FI/EMI screening is a discipline that is of interest to both the electronic engineer and the enclosure design engineer. The electronic engineer must take EMC into account when designing PC boards by careful component and circuit layout, using PCB shielding cans as small Faraday cages over problem components, paying attention to wiring runs, use of filters and ferrites etc. This can eliminate the majority of EMI emissions. However circuit design and layout may not be sufficient to attenuate emissions to the required levels and shielding of the enclosure may be necessary. This is where the enclosure design engineer is required to design the enclosure with sufficient thought to using EMI screening gaskets at joint interfaces. Although his brief may be to make the enclosure as small as possible, if this is not taken into consideration early on then this can result in an enclosure with no landed area on which to place a EMI screening gasket. This would require very expensive redesign or the use of more
R 44 MAY 2021 | ELECTRONICS TODAY
complex and expensive gasket materials and configurations.
Enclosures can be made of any material provided it is electrically conductive and will form a Faraday cage, metallic enclosures have this characteristic, however all plastic enclosures need to be made conductive by applying a conductive coating to the inner surface. This can be done using conductive paints, electroplating or vacuum metallisation.
Screened enclosures are rarely a simple case of a closed box design and may have openings for optical displays, ventilation and cable entry. All these areas may have to be screened:
• Optical displays with the use of a screened optical window which can be made by using fine wire meshes laminated in glass or clear plastic such as acrylic or polycarbonate or conductive clear coatings on the substrate such as indium tin oxide
• Enclosure ventilation can be screened using simple pierced or expanded metal in low
performance applications or with the use of honeycomb ventilation panels made of aluminium or steel in higher performance
applications • Cable entry into a screened enclosure needs to have the cable screening bonded to the conductive surface of the enclosure through a screened cable entry gland or screened connector
Flange/gasket considerations The design requirements for a gasket joint in a screened enclosure are primarily that there must be good electrical conductivity between opposing flanges through the gasket. Poor conductivity or high resistance between the flange and the gasket will result in poor shielding and if in areas there is no contact with the gasket this can result in a gap which could possibly act as a slot antenna making things worse, it is therefore important to consider fixing pitch and gasket compression forces to ensure a good continuous seal.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74