search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
DISTRIBUTION


implementation of everything from Bluetooth and Wi-Fi to NB-IoT and LoRa. And design engineers don’t even have to understand the differences between those technologies – there are people out there that have already done that work.


A simplified design flow minimises the overall time to data visualisation. Free tools like Digi-Key’s Scheme-It allows designers to produce professional schematic diagrams and deploy fully-completed cloud IoT solutions.


Design Leverage


IoT design requires knowledge across multiple disciplines. There’s a hardware component, a software component and a cloud component, and typically the folks involved with each of these components are speciality engineers. So, if an engineer specialises in hardware, they might not be as strong at the software and cloud pieces, and vice versa. That is why it’s always a team approach in IoT - because of the multiple disciplines involved.


But that’s also part of the challenge if you’re at a small startup coming up with the next brilliant idea – you don’t necessarily have that full team of specialised engineers. Thankfully, so many online communities are sharing knowledge to further everyone’s designs today, even Amazon and Google put their code on open source and engineers just need to pull in the right APIs to make everything work. For example, if you want voice recognition with Alexa or Google Home, it’s so much easier to do. You don’t have to be an expert in voice recognition, you can just pull the right APIs and make a call to them and you seamlessly have voice recognition.


Online communities have grown forums and project repositories to share knowledge, and code repositories like GitHub bring together millions of developers to share and build better solutions. Leveraging open source communities as well as hardware design environments often help remove barriers to system design and allow for quicker implementations. By designing in a tool like the open source EDA KiCad environment, engineers are exposed to tons of resources for everything from basic design creation tutorials to a robust community support network.


Should even greater expertise be required, there are also design service providers, many of which are included in Digi-Key’s Design & Integration Services program, a network of


design firms offering fee-based development, prototyping, manufacturing and systems integrations services.


Advanced Deployment Beyond getting a single prototype up and running, when ready to scale to a production environment or full-fledged deployment, designers have to bring in the security elements and consider adding a cloud services layer to the mix. Most designers can get to the single prototype stage quickly, but


scaling takes 10 times more bandwidth. When getting to the scaling stage, a lot of the layers to be added require more consideration like data services, remote management and maintenance. One of the latest trends has been sending updates over the air (OTA), similar to how we receive phone updates every few months. Those types of provisioning tools are important to consider when talking about a large-scale deployment.


Designers also have to consider testing as a critical component of scaling and advanced deployment requirements, especially when you involve wireless and RF, which can be a major pain point. If possible, designers should consider trying to partner with testing agencies like CETECOM to facilitate and improve the hit rate on testing. Of course, security is of the utmost importance. The Target data breach, for example, was done through the HVAC system and underscores the importance of security. Perhaps you’re creating a beer microbrew application where you’re testing fermentation levels and temperature and all of those other elements. If someone puts that inside a restaurant and it’s all connected to the same network, someone may try and tap through your application to get the credit card data from the main system. These are the types of things that you need in order to ensure your environment is secure. You also need to ensure your data services and elements are very robust, and that your remote management is accessible at all times.


Combining Trends for Innovation Innovation no longer just comes through the company, whether it’s a Fortune 500 manufacturer or an innovative startup. Many (smart) companies are hosting community hackathons and other idea drivers to come up with feature enhancements and other


community-sourced ideas. For example, GE’s FirstBuild is where new feature enhancements like the self-filling water pitcher in new refrigerators were created - they sponsor hackathons looking at ways to expand the value proposition of GE equipment. A recent winning team used an Arduino board interfaced to a standard GE oven to create a coffee roasting machine.


Key advantages


At Digi-Key we have an advantage over Original Equipment Manufacturers (OEMs) because we have the breadth of product and different suppliers providing different pieces of the solution, positioning us to bring it all together in an easy-to-digest format. We filter out the noise and take a look at specific IoT design requirements. We’ve already gone ahead and categorized what we think is most critical for designers, so what you end up finding on our website is the most pertinent information across a solution, not just a specific product mindset. Not only do we have the products, but we support the entire ecosystem. Digi-Key has many tools to help ensure the success of IoT solution designers. Our Startup Survival Guide is the perfect resource to understand how to navigate each step along the Design Roadmap from Ideation and Concept, past Prototyping and Design, all the way to Production, Marketing through to Post-Sales Support. We also have a Design Dashboard tool that provides resources and tasks along the roadmap journey, allowing designers to track each step along the way. Another example is Scheme-It, which is the ultimate ideation tool. Finally, we offer a range of more traditional tools like the BOM Manager to help organize all your component needs. And for folks just starting off in IoT, we’ve created a 6-part video series with Adafruit that talks about all the elements of an IoT design. For the hands-on learners, we also offer the Adafruit 4450, which is essentially a mini smart home, but also a great reference tool for IoT. If you’re looking to play around with IoT design, this kit includes complete step-by-step instructions.


In this day and age, you really don’t have to focus on re-inventing the wheel. It’s all about leveraging communities and the elements of design already created. So, what is your next world-changing innovation with IoT? I’d love to hear about it!


Digi-Key Electronics www.digi-key.com


MAY 2021 | ELECTRONICS TODAY 9


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74