search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Calibration


of both ferrous and non-ferrous metals, including valuable metals. They also make hydrochloric acid and sulfur recovery feasible – raw materials that can be used in gypsum board production. Even the ash residue from the process has many applications in the construction industry and can be used instead of concrete. All this is on top of the energy WtE plants can generate for homes and businesses.


The fact that organic pollutants are destroyed in the process and inorganic pollutants, especially heavy metals, are extracted and transformed into insoluble substances is a key advantage of WtE over landfilling. In this way the process contributes to a circular economy where waste materials are recycled, reused, or made inert to minimise their environmental impact. A common misconception of incinerators is that they are dirty and polluting – in fact, the exhaust from the stacks of a modern plant is extremely clean, often cleaner than the air surrounding the plant, as only cleaned gasses and water vapour are released into the atmosphere.


THE BENEFITS OF MODERN TECHNOLOGY


Digitalisation is revolutionising the WtE industry, driving process improvements and enabling transparency and third-party oversight. “Certain players in the industry manage up to ten plants and are streamlining their calibration and maintenance programs for consistency,” shares Christophe Boubay, sales director and country manager for Beamex France. “By doing so, they can assess and replicate successful practices through cloud-based solutions from one plant to another.” This approach ensures on-site technicians and remote management have a comprehensive overview of operations and can control the plants to maximise overall efficiency, minimise waste, and ensure end products are suitable for various applications.


ACCURATE DATA FOR CONTINUOUS IMPROVEMENT


The WtE process is highly regulated with many rules, frameworks, and standards that operators must follow, both when it comes to the waste that is fueling the process as well as factors such as wastewater disposal and the proper handling of scrap metal and ash by-products. In addition, WtE plants must demonstrate that they are recovering waste and not just disposing of it. These regulations make precise measurements


essential in order to be able to monitor and improve environmental performance. To ensure measurements are accurate, calibration is vital. Properly calibrated tools help ensure that a WtE plant’s pressure and temperature instruments for the incinerator and boiler control process are working at high levels of accuracy, for example. This ensures optimum instrument performance, resulting in higher


efficiency and reduced levels of CO2 entering the atmosphere. Compliance with emission restrictions is crucial – exceeding them can result in heavy financial penalties and even plant closure. Modern calibration software helps manage the calibration of stack emission instrumentation, thus ensuring continuing compliance with local and national regulations. The use of digital calibration certificates also makes it easier for WtE facilities to share calibration data for emissions monitoring, auditing, and regulatory compliance purposes.


FROM WASTE TO WATTS: A WTE SUCCESS STORY


Every year Encyclis’s Rookery South Energy Recovery Facility (ERF) in Bedfordshire, England, takes 550,000 tonnes of waste that would otherwise end up in landfill and turns it into 60 MW of sustainable energy for around 112,500 homes. Thousands of tonnes of ash are also produced for the construction industry. The site has been operating since January 2022 and is one of three WtE plants operated by Encyclis, with two more under construction. Encyclis collaborates closely with waste management companies, recovering valuable resources and by-products for reuse and contributing to the circular economy by turning household and commercial waste into a valuable resource. All Encyclis plants use continuous real-time monitoring to adhere to strict Environment Agency emission limits.


ENCYCLIS’S ROOKERY SOUTH ENERGY RECOVERY FACILITY


Encyclis chose Beamex to provide a comprehensive calibration ecosystem for the Rookery South ERF, including CMX Calibration Management Software, the bMobile Calibration Application, MC6 Advanced Field Calibrator and Communicators, MC6-T Multifunction Temperature Calibrator and Communicators, pumps and expert services. The company has also collaborated with Beamex to equip its WtE facility in Newhurst, UK. For both plants, Beamex has been involved from the


early stages, before the commissioning phase. This approach makes it possible to apply best practices based on decades of experience and ensure that the resulting calibration solution is user-friendly and enables seamless data exchange. A detailed calibration procedure was also integrated in the plants, specifying calibration schedules and test parameters. This information was then synchronised with handheld devices used by technicians and engineers. All workers have to do is connect to the instrument being calibrated and perform the calibration. The Beamex software does the rest, calculating the pass or fail result, updating the digital certificate, and resetting the recalibration date for future reference. Nick Folbigg, electrical, control and instrumentation team leader at Encyclis, likens managing an ERF to assembling a complex jigsaw puzzle: “Numerous parts need to align seamlessly for effective, efficient, and compliant operation. Using the complete Beamex calibration solution is a key piece of this puzzle.”


THE FUTURE OF WTE


Regulation has a role to play in helping the WtE industry reach its full potential and claim its place in the circular economy. The US, for example, faces significant financial hurdles in transitioning away from landfill-based waste management systems, but regulations preventing the disposal of untreated organic waste would be a practical approach to accelerating the change. After all, as Phillipp Schmidt-Pathmann of the Institute for Energy & Resource Management points out, the average person in an integrated waste management-based system usually pays less than in a landfill-based system.


Governments should also introduce a market mechanism for Carbon Capture, Usage and Storage, which will encourage more investment in WtE.


WtE plants can then focus on what they do best: reclaiming precious metals, boosting revenues with local secondary raw material streams, supporting construction, reducing resource demand, supplementing grid power, and making drinking water production more sustainable for local populations. WtE’s ability to convert electricity into hydrogen should also be exploited to allow for zero-emission buses and waste transportation. Together, we can help transform waste into a more sustainable future for us all.


Beamex www.beamex.com


Instrumentation Monthly June 2024


63


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100