search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Data acquisition


SeiSmic Signal chain Solution: aDa4084-2 Pgia anD ltc2500-32


The LTC2500-32 is a low noise, low power, high performance 32-bit SAR ADC with an integrated configurable digital filter. With 32-bit digitally filtered low noise and low INL output, it is targeted for seismology and energy exploration. A high impedance source should be buffered to


minimise settling time during acquisition and to optimise the switch cap input SAR ADC linearity. For best performance, a buffer amplifier should be used to drive the analogue inputs of the LTC2500- 32. A discrete PGIA circuit must be designed to drive LTC2500-32 for both low noise and low THD, which is introduced in the PGIA section.


Pgia imPlementation The key specifications of a PGIA circuit include:


Power supply: 5 V minimum


Since the AD7768-1 has 19.7 mW, the PGIA circuit should be <13.3 mW to meet the 33 mW power consumption target


Noise: the noise at gain = 1 is 0.178 µV rms, about 1/10 of AD7768-1’s 1.78 µV rms


There are three types of PGIA topologies: An integrated PGIA


A discrete PGIA with an integrated instrumentation amplifier


A discrete PGIA with an operational amplifier Table 1 lists ADI’s digital PGIAs. The


LTC6915 has the lowest IQ. With 50 nV/√Hz noise density, the integrated noise within the 430 Hz BW is 1.036 µV rms, which exceeds the 0.178 µV rms target. Because of this, an integrated PGIA is not a good choice. Table 2 lists several instrumentation


amplifiers, including the 300 µA IQ AD8422. The integrated noise within 430 Hz BW is 1.645 µV rms, so it is not a good choice, either.


noiSe Simulation


LTspice can be used to simulate the noise performance of a discrete PGIA. The integral noise BW is 430 Hz. Table 4 shows the noise simulation result of two different PGIAs and the AD7768-1. The ADA4084 solution has better noise performance, especially at high gain.


DiScrete Pgia by oPerational amPlifierS


The article “Programmable Gain Instrumentation Amplifiers: Finding One that Works for You” discusses the various integrated PGIAs and supplies good guidelines for building a discrete PGIA when trying to meet a specific requirement. Figure 7 shows the block diagram of a discrete PGIA circuit. ADG659/ADG658 can be chosen with low


Instrumentation Monthly September 2021 Figure 5. ADA4084-2 PGIA and LTC2500-32 signal chain solution. Figure 4. MCU post-FIR filter stages. Figure 3. Balancing the AD7768-1’s ODR for targeted noise with MCU postfiltering.


Figure 6. LTC2500-32 flat pass-band filter noise for different downsampling factors. Continued on page 48... 47


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74