search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
REACTOR DESIGN | ADVANCED REACTORS


funding linked to staged milestones, ongoing design, cost, and schedule reviews, and siting and community acceptance reviews. To enable a cost-competitive market environment


for nuclear, the report also calls for federal and state governments to provide tailored financial incentives that industry can use as part of a commercialisation plan. This should be consistent with the successful incentives provided to renewables and potentially includes extending and enhancing those provided in the Inflation Reduction Act. The scale of these incentives needs to be sufficient not only to encourage nuclear projects but also the vendors and the supporting supply chains, the authors state. In addition to providing electricity, nuclear power plants


can provide heat for industrial processes. Depending on the specific process, electricity and/or heat could be used for hydrogen production or associated synfuels, desalination, or district heating. Certain geographic locations, and new demand


scenarios such as industrial decarbonisation could create future market opportunities. All of these applications could become important as the chemical, materials, and transportation sectors transition to low-carbon operations, with hydrogen providing perhaps the most credible potential revenue stream owing to its value across all these sectors. Reactors could also be deployed as hybrid systems that can provide non-electric services when electricity from a reactor is not needed to meet grid demand, for example. However, the report acknowledges that engaging in such hybrid operations is not trivial and poses technical and regulatory challenges that must be resolved for each unique deployment paradigm. For this reason the authors call for key research and development needs for industrial applications to include assessing system integration, operations, safety, community acceptance, market size as a function of varying levels of implicit or explicit carbon price, and regulatory risks, with hydrogen production as a top priority. The DOE with the support of industry support groups such as EPRI and nuclear vendors should conduct a systematic analysis to this end, the report says.


Building and deployment Noting that nuclear projects in the United States and Europe have not been built on budget or on schedule in recent decades, the report further observes that much of the cost growth does not necessarily arise from the nuclear island, but from the civil works. The authors therefore recommend that while it is vital to demonstrate that advanced reactors are viable from a technical perspective, it is perhaps even more vital to ensure that the overall plant, including the onsite civil work, can be built within cost and schedule constraints. Costs for onsite development will still likely be a significant contributor to capital cost, and so more should be done over an extended period to research technologies that may streamline and reduce costs for this work. DOE should expand its current efforts in R&D for nuclear construction and make these advanced technologies broadly available. Some advanced reactor vendors are considering moving from the traditional “project-based” approach to a “product-based” approach with the goal of enabling improved schedules, reduced construction risk, associated cost savings, and improved quality. But, even if there are


14 | October 2023 | www.neimagazine.com


savings with the nuclear components, the challenge of timely and cost-effective construction of the overall civil works remains for deployment scenarios involving extensive on- site construction work. Nuclear owner/operators pursuing new nuclear


construction should also consider the creation of a consortium or joint venture to pursue the construction, thereby enabling the creation and maintenance of the necessary skilled technical engineering personnel to pursue projects successfully. Alternatively, advanced reactor developers operating within the traditional project delivery model should consider implementing a long-term business relationship, preferably an equity partnership such as a joint venture, or a consortium, with a qualified engineering, procurement, and construction firm experienced in the nuclear industry, the report concludes. The authors also pick up on the international ambitions


many vendors contemplate, noting that to foster a healthy international market the US government will need to better equip itself to swiftly negotiate and implement more arrangements for nuclear cooperation with existing and emerging nuclear countries. The report adds that although it is not anticipated that significant modifications of export regulations are required, efforts to increase international harmonisation could greatly improve options for export financing.


Nonetheless, the authors argue that international nuclear


projects are likely to require a financing support package that reflects a blending of federal grants, loans, and loan guarantees along with various forms of private equity and debt financing. They further recommend that the Executive Branch works with the private sector to build an effective and competitive financing package for US exporters to capitalise on export markets. The report also explores the regulatory environment, noting that with advanced reactor designs, the NRC must adjust a variety of regulatory requirements to accommodate the many differences between those and existing LWRs. NRC resolution of these issues is required for many new deployment scenarios to be realised, they note, adding that establishing the safety case for an advanced reactor will require a thorough verification of safety claims. The regulatory process should, however, be made as efficient and flexible as possible if advanced reactors are to be commercialised in the coming decades. The NRC therefore needs to enhance its capability


to resolve the many issues with which it is and will be confronted. In recognition of the urgency for the NRC to prepare now, the report argues that Congress should provide increased resources on the order of tens of millions of dollars per year to the NRC that are not drawn from fees paid by existing licensees and applicants. Clearly, for advanced reactors to contribute significantly


to a decarbonised energy system, there are many challenges to overcome. The report acknowledges that their resolution requires sustained effort and robust financial support by Congress, various departments of the US government (especially the Department of Energy and the Nuclear Regulatory Commission), the nuclear industry, and the financial community. Nonetheless, given the urgency of the need to respond to climate change, the report’s conclusion is emphatic that there is a need for the prompt resolution of the issues associated with commercialisation of low-carbon technologies. ■


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49