THE MAGAZINE FOR THE DRAINAGE, WATER & WASTEWATER INDUSTRIES
SPECIAL WORKS
explains. “Data from the older units was collected using a USB cable, however the newer instruments have Bluetooth connectivity, which means that our operators can connect more quickly and in adverse weather. Where possible, they can also drive close to the logger and communicate wirelessly with a smartphone or laptop from their vehicle.”
The ecoLog 1000 is an all-in-one instrument, including a water level sensor, a logger, and a built-in modem. It requires no additional tools for maintenance or battery replacement, and has been designed for long-term, unattended monitoring in challenging conditions. Key features therefore include extremely low- power operation including Bluetooth Low Energy, as well as a rugged stainless steel pressure probe housing and a ceramic temperature compensated sensor. Typically, remote connectivity is achieved via cellular network LTE-M (Cat-M1).
Force Crag Mine in the Lake District is a good example of an extremely remote
former mine with challenging environmental conditions. Cellular coverage is very limited on-site, so OTT built a local network which transmits water level data via radio to two loggers located in a higher position. Data from these loggers are then transmitted regularly to Oren’s FTP Server.
Mining commenced at Force Crag in 1835, and it became the last working metal mine (zinc, lead and barytes) in the Lake District, prior to its final closure in 1991. Metal pollution (zinc, cadmium and lead) from the mine polluted the Coledale Beck, a tributary of the River Derwent and Bassenthwaite Lake Special Area of Conservation.
The Coal Authority, working in partnership with the Environment Agency, Newcastle University and the National Trust, devised an innovative passive mine water treatment scheme to reduce the levels of metal pollution entering the river. The scheme, which officially opened in 2015, diverts water from the Level 1 adit
(horizontal passage to an underground mine) and routes it through a buried transfer pipe to two vertical flow ponds for treatment.
The ponds were built using the existing bunding of the former mining tailings lagoon, lined with a geomembrane, and filled with a compost treatment mix. Water is fed into the ponds, where it flows down through the compost and passes into a wetland, planted with soft rushes. The wetland filters any remaining solids and oxygenates the water prior to discharge into the Coledale Beck.
“Each site presents its own challenges,” Paul Robinson explains. “Many are in remote areas and in different environments, so we do our best to ensure we maximise the equipment to hand such as the OTT ecoLogs.” Looking forward, he says: “Remote telemetry is particularly advantageous, because it provides access to more frequent data than manual dips due to the schedule of visits that we work to.”
CSG receives accreditation for spill capabilities
CSG’s expertise in spill management has been recognised with accreditation from the industry’s leading body.
The waste management specialist is now an approved member of the International Spill Accreditation Scheme (ISAS) as a Spill Responder.
CSG has received accreditation for its experience and proficiency in spills on hardstandings and within drainage systems, as well as its spill consultancy and management services.
ISAS accredited businesses are members of the UK and Ireland Spill Association (UKEireSpill) which have been audited and have demonstrated competence in spill and incident response.
Mike Wilson, Group Business Development Manager at CSG, said: “We are long-standing members of UKEireSpill and it’s very pleasing to now have accreditation in recognition of our expertise in emergency spill situations.
“When a spill occurs, fast action is essential to keep businesses running and to ensure people and environments are safe.
FOLLOW US February 2024 | 19
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72