search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
in their distribution ranges. Invasive alien species are generalists and highly adaptable, and are therefore expected to cause even more harm under climate change conditions (Bellard et al. 2013; STDF 2013; Walther et al. 2009). In recognition of this high and increasing threat, the EU has responded with regional, national and dedicated legislation through EU Regulation 1143/2014 on Invasive Alien Species, which entered into force in 2015.


Furthermore, indicators on the impact of alien invasive species in the EU have been developed across a range of spatial scales and have been based on a range of measures. The EEA has provided a major contribution to this through the Streamlining European Biodiversity Indicators (SEBI 2010) project. Indicators include cumulative numbers of alien species since 1900; alien species that are of greatest threat to biodiversity; the impacts and abundance of alien species; awareness; and costs. Data come from the European Network on Invasive Alien Species (NOBANIS) database, which at that time included data for 11 Northern European countries (NOBANIS 2012).


58: Effects of climate change


Climatic thresholds for the survival or reproduction of individuals, often mediating demographic changes, vary across seasons and life-history stages (Garcia et al. 2014). Species responses encompass physiological, phenological, and biogeographical changes, and these may have implications for ecosystem functioning and structure (Bellard et al. 2012). At the species level, recorded impacts of climate change include changes in physiology, phenology and bionomics, geographical distribution, for example, species moving north or to higher elevations and interaction with other species (Kovats et al. 2014; Hannah 2011; Huntley 2007; Parmesan 2006; Theurillat and Guisan 2001). Briophyte communities in Arctic habitats in the pan-European region have been shown to lose productivity due to less abundant snow during winters (Elmendorf et al. 2012a, 2012b). For their phenology, many organism groups like butterflies are linked to specific (spring) temperatures, which initiate their activity (Stefanescu et al. 2003). In response to climate change, 46 out of 69 studied European bumblebee species are projected to experience range contractions by 2050


(Potts et al. 2015), and many species groups monitored in Europe already show range shifts towards the pole (Mason et al. 2015). A recent meta-analysis, however, suggests that altered species interactions in response to climate change may be more important than direct effects (Ockendon et al. 2014).


59: Biodiversity data gaps


Certain areas in particular suffer from biodiversity data gaps. Estimates of species richness in the Irano–Anatolian highlands or Central Asian mountains, for example, are most likely underestimates (Ficetola et al. 2013). Insufficient data are available for 23 per cent of the species classified under the European Red List assessment (2 250 species out of 9 735 assessed species) (IUCN 2015a), and 50 per cent of European cetaceans and turtles have not yet been assessed for EU Habitats Directive Article 17. Furthermore, among European marine species overall, 20 per cent of the species are data deficient (Nieto et al. 2015). For many species, detailed data on their distribution and population trends are sparse. Unequal coverage or availability of monitoring data leads to a spatial bias, with particularly sparse data for Eastern and South Eastern Europe, the Caucasus and Central Asia. Temporal gaps in data prevent the detection and interpretation of changes and trends for species and populations, and thus critically limit biodiversity knowledge, for example, when evaluating the effectiveness of conservation measures. Significant gaps also exist in genetic data (Geijzendorffer et al. 2015), including for domesticated animals (FAO 2013). Reasons for data gaps vary between areas and taxa, and can be due to the inaccessibility of certain regions, such as in the Caucasus, lack of local or regional capacity, or taxonomic uncertainties (Bilz et al. 2011). Thus, an important future need will be to close biodiversity data and monitoring gaps across the pan-European region.


60: Wildlife management


Wildlife management is particularly challenging for large carnivores because they are iconic species, move across boundaries due to their large range, and come into conflict with humans. Nonetheless, there are signs of stabilizing and even increasing populations after decades of decrease or even extinction.


233


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352  |  Page 353  |  Page 354  |  Page 355  |  Page 356  |  Page 357  |  Page 358  |  Page 359  |  Page 360  |  Page 361  |  Page 362  |  Page 363  |  Page 364  |  Page 365  |  Page 366  |  Page 367  |  Page 368  |  Page 369  |  Page 370  |  Page 371  |  Page 372  |  Page 373  |  Page 374  |  Page 375  |  Page 376