search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
HAEMATOLOGY


and the embedding of automation and real-time analytics, all of which represent a paradigm shift. By embracing this, the medical community stands on the brink of a transformative leap forward in patient care, research, and education.


References 1 Salama ME, Otteson GE, Camp JJ,


et al. Artificial Intelligence Enhances Diagnostic Flow Cytometry Workflow in the Detection of Minimal Residual Disease of Chronic Lymphocytic Leukemia. Cancers (Basel). 2022;14(10):2537. doi:10.3390/ cancers14102537


2 Zhong P, Hong M, He H, et al. Diagnosis of Acute Leukemia by Multiparameter Flow Cytometry with the Assistance of Artificial Intelligence. Diagnostics (Basel). 2022;12(4):827. doi:10.3390/ diagnostics12040827


3 Gedefaw L, Liu CF, Ip RKL, et al. Artificial Intelligence-Assisted Diagnostic Cytology and Genomic Testing for Hematologic Disorders. Cells. 2023;12(13):1755. doi:10.3390/cells12131755


4 Ng DP, Simonson PD, Tarnok A, et al. Recommendations for using artificial intelligence in clinical flow cytometry. Cytometry B Clin Cytom. 2024;106(4):228-238. doi:10.1002/ cyto.b.22166


5 Walter W, Pohlkamp C, Meggendorfer M, et al. Artificial intelligence in hematological diagnostics: Game changer or gadget?. Blood Rev. 2023;58:101019. doi:10.1016/j.blre.2022.101019


6 Clichet V, Lebon D, Chapuis N, et al. Artificial intelligence to empower diagnosis of myelodysplastic syndromes by multiparametric flow cytometry. Haematologica. 2023;108(9):2435-2443. doi:10.3324/ haematol.2022.282370


7 El Alaoui Y, Elomri A, Qaraqe M, et al. A Review of Artificial Intelligence Applications in Hematology Management: Current Practices and Future Prospects. J Med Internet Res. 2022;24(7):e36490. doi:10.2196/36490


8 Wang W, Luo M, Guo P, Wei Y, Tan Y, Shi H. Artificial intelligence-assisted diagnosis of hematologic diseases based on bone marrow smears using deep neural networks. Comput Methods Programs Biomed. 2023;231:107343. doi:10.1016/ j.cmpb.2023.107343


9 Haferlach T, Walter W. Challenging gold standard hematology diagnostics through the introduction of whole genome sequencing and artificial intelligence. Int J Lab Hematol. 2023;45(2):156-162. doi:10.1111/ijlh.14033


10 Fuda F, Chen M, Chen W, Cox A. Artificial intelligence in clinical multiparameter flow cytometry and mass cytometry-key tools and progress. Semin Diagn Pathol.


2023;40(2):120-128. doi:10.1053/j. semdp.2023.02.004


11 Gasparin AT, Araujo CIF, Schmitt P, et al. Hilab system, a new point-of- care hematology analyzer supported by the Internet of Things and Artificial Intelligence. Sci Rep. 2022;12(1):10409. doi:10.1038/s41598-022-13913-8


12 Cheng ZJ, Li H, Liu M, et al. Artificial intelligence reveals the predictions of hematological indexes in children with acute leukemia. BMC Cancer. 2024;24(1):993. doi:10.1186/s12885-024- 12646-3


13 Zhang H, Qureshi MA, Wahid M, et al. Differential Diagnosis of Hematologic and Solid Tumors Using Targeted Transcriptome and Artificial Intelligence. Am J Pathol. 2023;193(1):51- 59. doi:10.1016/j.ajpath.2022.09.006


14 Zare Harofte S, Soltani M, Siavashy S, Raahemifar K. Recent Advances of Utilizing Artificial Intelligence in Lab on a Chip for Diagnosis and Treatment. Small. 2022;18(42):e2203169. doi:10.1002/ smll.202203169


15 Zini G, Mancini F, Rossi E, Landucci S, d’Onofrio G. Artificial intelligence and the blood film: Performance of the MC-80 digital morphology analyzer in samples with neoplastic and reactive cell types. Int J Lab Hematol. 2023;45(6):881-889. doi:10.1111/ijlh.14160


16 Kotsyfakis S, Iliaki-Giannakoudaki E, Anagnostopoulos A, et al. The application of machine learning to imaging in hematological oncology: A scoping review. Front Oncol. 2022;12:1080988. doi:10.3389/fonc.2022.1080988


17 Sun D, Mao X, An T, et al. Screening for malignant tumor cells in serous effusions with an automatic hematology analyzer using a novel diagnostic algorithm. Ann Transl Med. 2022;10(6):321. doi:10.21037/ atm-22-411


18 Zini G, Barbagallo O, Scavone F, Béné MC. Digital morphology in hematology diagnosis and education: The experience of the European LeukemiaNet WP10. Int J Lab Hematol. 2022;44 Suppl 1:37-44. doi:10.1111/ijlh.13908


19 Starostka D, Dolezilek R, Chasakova K. Artificial Intelligence Increases Reliability in Diagnostic Hematooncology. J Clin Transl Pathol. 2023;3(3):146-147. doi: 10.14218/ JCTP.2023.00015


20 Tayebi RM, Mu Y, Dehkharghanian T, et al. WWW.PATHOLOGYINPRACTICE.COM APRIL 2025


Automated bone marrow cytology using deep learning to generate a histogram of cell types. Commun Med (Lond). 2022;2:45. doi:10.1038/s43856-022- 00107-6


21 Evans SJM. Flow Cytometry in Veterinary Practice. Vet Clin North Am Small Anim Pract. 2023;53(1):89-100. doi:10.1016/j. cvsm.2022.07.008


22 Kwoun WJ, Lee HT, Ahn JY. Frequencies of glycosylphosphatidylinositol (GPI)- deficient cells using high-sensitivity flow cytometry as per the 2018 ICCS/ ESCCA consensus guideline in patients with hematologic malignancy, aplastic anemia, or cytopenia. Expert Rev Hematol. 2022;15(2):175-181. doi:10.1080/1747408 6.2022.2038561


23 Dimopoulos K, Bonneau D, Hannibal J. FlowDiff: a simple, flow cytometry-based approach for performing a leukocyte differential count. Scand J Clin Lab Invest. 2024;84(7-8):493-501. doi:10.1080/003655 13.2024.2426140


24 Chen CN, Huang TC, Yu SC, Ko JY, Yang TL. Incorporation of ultrasound- guided core biopsy with flow cytometry to assist the diagnosis of cervical lymphoma. Eur Arch Otorhinolaryngol. 2023;280(3):1437-1446. doi:10.1007/ s00405-022-07705-z


25 Dehkharghanian T, Mu Y, Tizhoosh HR, Campbell CJV. Applied machine learning in hematopathology. Int J Lab Hematol. 2023;45 Suppl 2:87-94. doi:10.1111/ ijlh.14110


26 Lopes MGM, Recktenwald SM, Simionato G, et al. Big Data in Transfusion Medicine and Artificial Intelligence Analysis for Red Blood Cell Quality Control. Transfus Med Hemother. 2023;50(3):163-173. doi:10.1159/000530458


Shahnawaz (Shah) Memon is a biomedical scientist currently working at Leeds Teaching Hospitals NHS Trust. He began his career in India with a bachelor’s degree in microbiology and worked as a Laboratory Technician in biochemistry and microbiology. After moving to the UK, he completed an MSc in Biomedical Science at Leeds Beckett University in 2022, transitioning his career focus to haematology.


37


The advancement in computational power will facilitate real-time analysis of flow cytometry data. AI-driven systems would allow for instant data analysis, thus providing immediate diagnostic insight


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56