search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
HOSPITAL LIGHTING


city of Rio de Janeiro. Overall, all façades allowed for natural light to enter the interior when the kinetic elements were fully open; however, not all allowed for views of the exterior space. The Kiefer Technic Showroom3 SDU Kolding Campus5


and models presented


the most balanced performance, combining the provision of natural light, shading control, and the preservation of external views. In the case of Kiefer Technic,3


the autonomy of the kinetic


elements and the possibility of hybrid control (manual, autonomous, and responsive) configured an effective solution for the hospital environment. The SDU Kolding5


stood out for its


simplicity of operation and the use of accessible materials, although with greater construction complexity compared to the first. The Al Bahar Towers4


façade also


showed good performance, allowing external visibility and efficient shading, but with a higher level of kinematic system complexity. The Embassy of the Nordic Countries2


achieved satisfactory


results in blocking direct solar radiation over the hospital bed, but the loss of external visibility when closed limits its application in inpatient rooms. The Arab World Institute,1


demonstrated limitations due to the difficulty of maintenance and the compromise of the external view when closed. The Fosun Foundation façade6


façades with a greater number of fragmented and kinetically independent elements allow for greater control of light and shadow, which is significantly relevant for the treatment of patients in recovery and long-term care. Among the examples analysed, the Kiefer Technic Showroom3 Kolding Campus5


and the SDU stand out, as they most


consistently met the parameters defined for hospital environments: low fragmentation, less complex systems, replaceable materials, and autonomy of kinetic elements. These models demonstrated practical applicability in Healthcare Facilities (EAS), combining energy efficiency, shading control, and visual integration with the external environment. However, models such as the Arab and the Fosun


World Institute1 Foundation6


showed significant despite being innovative, is the


only one that does not allow localised shading for the hospital bed. Since its system consists of tubes that slide in opposite directions, the incidence of natural light and the degree of external visibility vary according to their displacement, which prevents precise shading control. The three-dimensional changes in form,


materiality, and the independence of the kinetic elements directly impacted the shading of the study object.


Conclusion Increasing the availability of natural light in hospital patient rooms improves the effectiveness of healthcare delivery and enables patient recovery faster. Therefore, kinetic façades with responsive technology can improve lighting comfort in hospital buildings, contributing to the therapeutic process. The case study found that in most of the models studied, kinetic façades with responsive technology could be applied in inpatient wards, enhancing the natural light in rooms and allowing visibility to the outside. However, the geometric shapes of these façades can interfere with shadow placement and light intensity, and exterior visibility can be compromised due to the kinematics and materials used. It was also possible to observe that


78


limitations, either due to maintenance complexity or the lack of localised lighting control, highlighting the need for specific adaptations to the hospital context. Overall, it is concluded that the adoption of kinetic façades in healthcare environments must consider not only aesthetic and technological aspects, but also functional and operational criteria, in order to ensure adequate conditions of natural lighting, visual comfort, and simplified maintenance. Future research should deepen the analysis of illuminance, luminance, and solar radiation using parametric methods, in order to consolidate design guidelines applicable to the reality of Brazilian hospitals.


References 1 ANVISA. Resolução – RDC no 50, de 21 de fevereiro de 2002. Dispõe sobre o Regulamento Técnico para planejamento, programação, elaboração e avaliação de projetos físicos de estabelecimentos assistenciais de saúde. Brasília: Ministério da Saúde, 2002. [online]. [Available: http://bvsms.saude.gov.br/bvs/saudelegis/ anvisa/2002/rdc0050_21_02_2002.html].


2 Brasil PdeC, Muzi ION, Rola SM, Fachadas cinéticas com tecnologia responsiva para a luz natural em quartos de internação, in A Net zero dream: a geração de energia elétrica tomando a cidade como base, 1a. In: Lombardo LLB (ed), Rio de Janeiro: Acaso Cultural 2023; 10: 189–212.


3 Bitencourt F. Iluminação Hospitalar. A luz em ambientes hospitalares como componente de saúde e conforto humano. Lume Arquitetura. E27, pp46–50, 2007.


4 Cardoso JdeD. A Luz: fator de vida e cura nos EAS. In: Bitencourt F, Costeira E (eds), Arquitetura e Engenharia Hospitalar, 1a. Rio de Janeiro: Rio Books, 2014; 8: 189–220.


5 Walch JM, Rabin BS, Day R, Williams JN, Choi K, Kang JD. The effect of sunlight on postoperative analgesic medication use: a prospective study of patients, undergoing


spinal surgery. Psychosom Med 2005; 67 (1): 156–63.


6 Wang CH, Kuo NW, Anthony K. Impact of window views on recovery – an example of post-caesarean section women. Int J Qual Health Care 2019; 31 (10): 798–803.


7 Alimoglu MK, Donmez L. Daylight exposure and the other predictors of burnout among nurses in a University Hospital. Int J Nurs Stud 2005; 42 (5): 549–55 [doi: 10.1016/j.ijnurstu.2004.09.001].


8 Toledo LC. Feitos para curar, 1a Edição. Rio de Janeiro: Rio Books, 2020.


9 SPBR Arquitetos, Hospital Público de Emergência de São Bernardo do Campo. Accessed: 30 June 2025. [online]. [Available: https://spbr.arq.br/project/1409].


10 Goodwin PL. Brazil builds: architecture new and old, 1652-1942. New York: The Museum of Modern Art, 1943. [online]. [Available: https://www.moma.org/calendar/exhibitions/ 2304 Acesso em: 01 de mar.2021].


11 Hosseini SM, Mohammadi M, Rosemann A, Schröder T Lichtenberg J. A morphological approach for kinetic façade design process to improve visual and thermal comfort: Review. Build Environ 2019, 153 (11): 186–204.


12 Le-Thanh L, Le-Duc T, Ngo-Minh H, Nguyen QH, Nguyen-Xuan H. Optimal design of an Origami-inspired kinetic façade by balancing composite motion optimization for improving daylight performance and energy efficiency. Energy 2021; 219 (1): 119557.


13 C. Y. Transmuseus Videos, Instituto do Mundo Árabe [imagem], Instituto do Mundo Árabe e Chanel Mobile Art, Paris. Accessed: 5 Sept 2020. [online]. [Available: https://www.youtube.com/ watch?v=ZEj9o_LRHco&t=6s].


IFHE


14 Berger and Parkkinen, Embaixada Nórdicas, Berlim, Alemanha 1995-1999 [imagem], Berger & Parkkinen. Accessed: 28 Feb 2021. [online]. [Available: https://berger- parkkinen.com/en/nordic-embassies].


15 C. Y. Giselbrechtzt, Kiefer Technic Showroom [imagem], Dynamic facade “Kiefer Technic Showroom.” Accessed: 5 Sept 2020. [online]. [Available: www.youtube.com/ watch?v=rAn4ldWjw2w].


16 Rhino Grasshopper, Kinetic Architecture & Art Examples [imagem], Publicado pelo canal Rhino Grasshopper. Accessed: 5 Sept 2020. [online]. [Available: https://www.youtube.com/ watch?v=jeTtE9_y8Ow&t=3s


17 Lindhe J, Schubert M. SDU Campus Kolding/Henning Larsen [imagem], 2015. Accessed: 5 SepT 2020. [Online]. [Available: https://www.archdaily.com/590576/sdu- campus-kolding-henning-larsen-architects].


18 Labeee. Analysis SOL-AR. Accessed: 27 Mar 2022. [online]. [Available: https://labeee.ufsc.br/ downloads/softwares/ analysis-sol-ar].


19 ABNT. NBR 15220-2: 2022. Desempenho térmico de edificações - Parte 2 - Componentes e elementos construtivos das edificações - Resistência e transmitância térmica - Métodos de cálculo (ISO 6946:2017 MOD). Associação Brasileira de Normas Técnicas, 2022.


IFHE DIGEST 2026


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104