While there is no data on persistence of the coronavirus on soft textile surfaces or, worryingly, interior of soft textile objects from the perspective of disinfection, it is known that common glass, steel, silicone rubber and polyvinyl chloride permit the persistence of the less pathogenic coronavirus 229E for at least five days, while copper or copper alloys inactivate the virus within minutes by means of copper ion mediated oxidation14


Importantly, aerosol and surface stability of the coronavirus causing the current COVID-19 has been investigated. The two strains were quite similar. It was found that the surfaces were permissible for infectivity of virus particles in the following order: plastic, steel, cardboard and copper. Viral titers reduced within days on plastic and steel, while no virus was detectable on cardboard and copper after eight and four hours, respectively.15

The typical filling

materials for pillows are polyester fibres and polyurethane foams i.e. plastics; both of which are cellular by nature. It has been demonstrated that pillow interiors can act as reservoirs for pathogens, including viral pathogens like norovirus.16,17


a common sense infection prevention assessment should highlight pillows as a fomite risk.

The infected pillow has several things in common with the infected human in terms of its capacity to spread infection. The human being coughs and sneezes, so generating a periodic aerosol of contaminated material into the ambient surroundings. The conventional coated pillow with stitched seams does something very similar: approximately 2 litres of humid air contaminated with microorganisms carried in droplet suspension are aerosolised into the environment, every time the patient’s head is placed on the pillow. This has the capacity to recolonise the nearby environment, negating the effectiveness of any cleaning regimen.

When the head is lifted from the pillow, air flows into the pillow and can contaminate the interior; when the head is laid on the pillow or is moved, air escapes the pillow and can contaminate the exterior – in effect, an aerosol generating procedure.

Also, in common with the human vector is the tendency for pillows to circulate around hospitals, or even between hospitals18


Antiviral activity of impregnated textiles against nCoV-19 concretely is more speculative: the antiviral activity must be either very broad and potent or else a coronavirus study is necessary for clarity. According to the recent test by an independent laboratory, PneumaPure filters can block transmission of coronavirus 229E. Hence, this filter can also protect the interiors of pillows and mattresses from nCoV-19 contamination thereby eliminating the fomite risk posed by contaminated soft surface interiors. The SleepAngel medical pillow, developed by Gabriel Scientific and available in the UK from Central Medical Supplies, features PneumaPure filter technology. This technology enables the pillow to ventilate, so it’s comfortable, but prevents the passage of liquids and airborne pathogens that colonise the interior of standard bedding products. The SleepAngel pillow differs from standard occlusive pillows in that the seams are high frequency welded to make a seal, as opposed to stitched. The absence of stitching holes prevents ingress of contaminated air via the seams. Instead, air passes in and out of the pillow via a waterproof microbial filter, which has been tested to prevent ingress of bacteria, fungi, and viruses as small as 25 nm.19 Laboratory validation shows barrier

pillows to be impervious to pathogens, where standard pillows become quickly colonised by organisms with many months longevity. Samples taken from pillows in service demonstrate a bioburden in standard pillow interiors which is complexly eliminated in barrier pillows. Environmental contamination is known to take place by aerosolisation via the pillow, and increased environmental contamination is known to result in increased transmission, and increased rates of infection. Infected pillows are likely to be a significant vector for infection, and the introduction of a CE marked, validated barrier pillow, alongside an audit protocol which considers pillows and their serviceable condition, is a simple, inexpensive, and prudent measure.


References 1 Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006;6:130.

2 Mottar R, Roth M, Allen M, Gerber R, Gerber BR. (2006). Pillow Talk. Examining Pillow Cores In A Regional Burn Center. Am J Infect Control, 34(5), E107–E108.

3 Türk S, Christersson J, Rööp T, Didenko D. Comparison of bacterial loads of two types of hospital pillows: perspectives of improving hospital hygiene standards. Can J Infect Control. 2017 32; 112-14.

4 Kampf G, Todt D, Pfaender S, Steinmann E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect. 2020 Mar;104(3):246-251.

5 Geller C, Varbanov M, Duval RE. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses. 2012 Nov 12;4(11):3044-68.

6 Casanova LM, Jeon S, Rutala WA, Weber DJ, Sobsey MD. Effects of air temperature and relative humidity on coronavirus survival on surfaces. Appl Environ Microbiol. 2010 May;76(9):2712-7.

7 Chaovavanich A, Wongsawat J, Dowell SF, Inthong Y, Sangsajja C, Sanguanwongse N, Martin MT, Limpakarnjanarat K, Sirirat L, Waicharoen S, Chittaganpitch M, Thawatsupha P, Auwanit W, Sawanpanyalert P, Melgaard B. Early containment of severe acute respiratory syndrome (SARS); experience from Bamrasnaradura


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92