ENGINE & TURBINE TECHNOLOGY
coating materials and tooling to restore hot gas path components to a safe and serviceable condition.
Sophisticated diagnostic tools are required to examine turbine blades
on thermal radiation being given off by the component under examination. In contrast, active, lock-in thermography uses ultrasonic excitation to introduce energy into the object, such as a turbine blade, and measures its response. If the normally homogeneous material is damaged, some of the wave energy is absorbed and heat is generated, which can be detected by the thermal imaging camera. Applied to gas turbine components, where effective cooling is essential for
Expert on-site support ensures overhaul projects are delivered on time
extended service life, this technology can show at a glance whether cooling holes are blocked or open. As part of an inspection or a repair, the cooling channels in both blades and vanes should be checked to ensure continued reliability.
LATEST REPAIR TECHNOLOGIES Modern third-generation gas turbines use sophisticated designs and advanced technology components that require new inspection procedures, welding techniques,
Te use of higher turbine inlet temperatures over 1,300°C to achieve increased power output has led to the use of single-crystal (SX) materials in turbine blades. Unless the facility being used to maintain the turbine has the capabilities to repair these blades, they need to be replaced at every major overhaul after 24,000 operating hours. For example, Sulzer has developed advanced repair techniques that enables SX blades to be refurbished to an as-new condition, offering operators a substantial saving in maintenance costs. By working with experienced design engineers and field service staff, gas turbine operators have an opportunity to benefit from independent maintenance support delivered within exacting timeframes.
Campbell Archibald is with Alba Power, a Sulzer brand.
www.albapower.com
www.engineerlive.com 31
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52