SECTION TITLE
AUTOMOTIVE DESIGN
computer controlled oil pumps (to our own design). Each is capable of supplying individual parts of the engine with oil under conditions unique to that part of the engine and sensitive to the engine operating conditions (for example, we can supply the head with oil at pressures different to the block and supply the bearings with more oil when the engine is under high load).” Te idea is to completely profile the
Powertrain Technologies completely re-designed the engine lubrication system
FRICTION W
REDUCING ENGINE
An innovative torque sensor is helping to reduce engine emissions and improve economy as part of a project to develop an intelligent lubrication system
ith engine efficiency under the spotlight like never before, automotive companies are exploring all avenues for
improving performance. And because engines have a rotating power output, torque is the key measurement. Engine lubrication systems are essentially
dumb. Tey have a simple mechanical pump that has been sized to ensure an adequate supply of oil in the worst operating condition. Tis is typically a hot engine at idle. Te pump is thus hugely oversized for most of the rest of the speed range and, as a consequence, nearly 60% of its output is dumped straight back into the sump via the relief valve. It will also deliver the same amount of oil to every part of the engine regardless of what that system might actually need. Te pump is also insensitive to engine load and thus the bearings will receive the same oil supply at a given speed regardless of the load. Tis is a very inefficient system. In addition the pump forces nearly a ton of oil per hour through the filter, and when
6
www.engineerlive.com
the oil is cold this takes a huge amount of energy. With this in mind a major UK company
asked Powertrain Technologies to design an intelligent lubrication system and to analyse its effects on engine friction and parasitic losses. Tey built a highly specialised test rig for the project and since accuracy in measuring small changes in drive torque reliably and repeatably was a critical requirement a key part of the rig is a TorqSense transducer from Sensor Technology.
Te engine being tested was a
current production diesel and the test bed was configured for motored friction tests with a 6,000rpm 32kW electric motor driving the engine. Andrew Barnes, a
director at Powertrain Technologies, explains: “We completely re-designed the engine lubrication system and installed a bank of five
performance of the engine under various lubrication conditions and to derive optimum configurations of the intelligent systems for best performance. “Both petrol and diesel engines run far cleaner than they did 20 or 30 years ago,” says Barnes. “However, the need to operate efficiently under a wide range speeds and loads and environmental conditions from -40°C to 40°C remains the Achilles heel. Intelligent lubrication has the potential to improve performance no end, although quantifying the best configuration is painstaking work.” Te torque sensor is critical to the
project since the object of the exercise is to measure the effect on friction of a range of different oil supply strategies and oil types. Tus the changes in friction are represented by a change in the motored drive torque of the engine. TorqSense sensors are particularly
appropriate for development work because they are wireless. TorqSense effectively senses and measures the radio frequency (RF) waves generated by two surface acoustic wave (SAW) devices fixed onto a rotating shaft and converts them to a torque measurement using two tiny SAWs made of ceramic piezoelectric material with frequency resonating combs laid down on their surface. Te SAWs are fixed onto the drive shaft at 90°to one another. As the torque increases the combs expand or contract proportionally to the torque being applied. In effect, the combs act similarly to strain gauges but instead measure changes in resonant frequency. Te adjacent RF pickup emits radio waves towards the SAW’s as well as collecting the reflected
resonant changes and its this change in frequency of the
TorqueSense transducers are wireless
reflected waves that identifies the applied torque. Te research has now progressed to the next stage in which the test rig is forsaken and the engine installed in a car to quantify the effect on fuel economy.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76