search.noResults

search.searching

dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MATERIALS • PROCESSES • FINISHES


SECTION TITLE


medical biosensors, and fuel injection systems (burr and stress-free meaning springs function for longer) and bipolar plates for liquid-to-liquid or liquid-to-gas heat exchanger (complex channels etched into plates which remain perfectly flat).


How do you etch copper and copper alloys? As a relatively soft metal that exhibits high thermal and electrical conductivity, copper etches quickly in standard etch chemistries, unlike contact machining processes which can stretch copper out of shape and alter its properties.


Copper and its alloys are highly durable, ductile, and malleable, meaning it is well suited to forming and plating post-etching. Precision Micro produces thousands of 3D electrical contacts, pins, terminals, EMI gaskets, shielding, lead frames and connectors each month for automotive, electronics, aerospace and medical applications.


How do you etch nickel and nickel alloys? Nickels high resistance to heat and corrosion make it a popular choice when developing a variety of parts and


Virtually any metal can be chemically etched


components, it being commonly used as a protective outer coating for softer metals. Very few things are made out of pure nickel as it is used primarily as a stabiliser. However, although Precision Micro can apply its photo etching to an array of nickel-coated metals, it is also – unusually – able to process pure nickel


and nickel alloys. One such application saw the company recently apply its experience to the processing of Inconel, a high temperature nickel-based superalloy which as well as superior heat resistance also exhibits excellent resistance to corrosion, pressure and oxidation.


www.engineerlive.com 57


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76