search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MATERIALS, PROCESSES & FINISHES The hybrid SPF process could slash forming times by 50%


FORMING NEW OPPORTUNITIES


How a new hybrid approach to titanium manufacturing is boosting UK aerospace opportunities


S


uperplastic forming (SPF) is a near net shape manufacturing method for producing thin- sheet metallic components,


and is typically used to create complex-shaped titanium parts used within the aerospace sector. Now, a new hybrid approach to the manufacturing process is poised to boost capability in the UK market and increase manufacturing efficiency for key aerospace components. The project forms part of the


National Aerospace technology Exploitation Programme (NATEP), and is led by Shropshire-based lightweight


engineering firm SDE Technology. Supported by the Advanced Forming Research Centre (AFRC) within the National Manufacturing Institute Scotland (NMIS) Group and industry collaborators Boeing and Timet UK, SDE Technology is leading the development of a new hybrid SPF process that makes use of innovative new tooling to enable a significantly reduced process time.


A HYBRID APPROACH SPF is a specialised manufacturing technique used to mould highly ductile metals, such as aluminium, titanium


and certain steel alloys, into complex shapes by exploiting their superplastic behaviour. “In this process, a metal sheet is


heated to a high temperature where it becomes extremely malleable, typically between 40-70% of its melting point,” explains Les Gill, member of SDE’s Technical Advisory Group and principal consultant at TaBA Associates. “The softened metal is then placed into or over a mould and shaped using controlled, pressurised gas to stretch and form it to the desired contours. Once formed, the metal is cooled under


www.engineerlive.com 27


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48