Figure 2 : By utilizing the bandwidth and low latency of the OARnet and Internet2 networks, CEMAS has been able to install -control stations in locations hundreds of miles from Columbus, Ohio, that allow users to operate the microscopes without any perceptible delay.

this cohort spans all aspects of electron and ion beam instru- mentation making CEMAS a “one-stop shop” that attracts users from OSU, as well as from universities, government laboratories, and industries across the globe. Remote microscopy . To meet the objective of providing wide-ranging access to top-of-the-line instrumentation, CEMAS has implemented a microscopy program that is having far-reaching ramifications in the way advanced microscopy capabilities are made available to a broader range of university and industrial clients, in both efficiency and economics. Furthermore, remote microscopy is having a major impact on the way microscopy and other charac- terization techniques are taught and the way both industry and academia collaborate. CEMAS continues to expand the program throughout Ohio and across the nation, and it is exploring the possibility of international links. The first phase of the program was instituted with funding from the Ohio Third Frontier Program and FEI Company, now ThermoFisherScientific, in partnership with the University of Dayton and the Air Force Research Laboratory at Wright Patterson Air Force Base [ 1 ].

Remote Collaboration

Having created a world-class facility, CEMAS wanted to extend its use to the maximum number of potential users, both on campus and off . T e goal was to make the advanced instru- mentation and skilled technical support available to users in


all disciplines within the University and, equally important, to industrial, academic, and government across the nation. In this age of high-speed communication, one must question the need to travel long distances in order to use even the most advanced microscopes. Scientists and researchers routinely hold video conferences and are quite used to partici- pating in remote collaborations. So why not do the same with the operation of the microscopes at CEMAS? With this in mind, researchers and staff tackled the problem of creating a practical remote capability for CEMAS’s extensive collection of advanced electron microscopes. Earlier remote operations . The idea of remote operation of electron microscopes is not new. There have been many “demonstrations” at microscopy conferences of data collection on a vendor’s exhibition booth from a microscope that is hundreds or even thousands of miles away. However, these are often a long way from being “live and real-time” operation; rather, they demonstrate that “over the shoulder” or “remote desktop” viewing is possible, but “live interactive control” of the microscope is much more challenging. Earlier efforts to develop “telemicroscopy” in universities and research centers were often limited either by the network bandwidth/latency or could only give limited control of the microscope functions [ 2 – 9 ]. For example, while at Imperial College London, the lead author demonstrated the use of a microscope at Oakridge National Laboratory in Tennessee • 2018 September

Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60