This page contains a Flash digital edition of a book.
Aerospace Materials Furthermore, there is a significant difference in the shape


of the cutting chips between the conventional carbide drill and the WHO-Ni. Typical chips from heat-resistant alloy materials are inconsistent in shape and size, and can lead to unexpected tool breakage. More importantly, tool breakage may damage the part and reduce production, which can be costly and should be avoided. WHO-Ni’s sharp cutting edges are designed to sup- press heat generation during machining and promote the stable creation of chips to enable trouble-free chip evacuation.


The Tapping of Heat-Resistant Alloys Special cutting tools are required in order to effectively fa-


cilitate the tapping of heat-resistant alloys. OSG has enhanced its Ni tap series with the WHR-Ni-SFT (for blind hole) and WHR-Ni-POT (for through hole). Te WHR-Ni series excels in nickel-based alloys and is well suited for machining parts such as jet engine components.


achieve more than five times the amount, with 111 holes. As illustrated by this application example, the higher the pitch, the less life a tap will have.


The Milling of Heat-Resistant Alloys Chattering is a common condition in the milling of heat-


resistant alloys and other exotic aircraſt materials. To facili- tate consistent and chatter-free milling, OSG has launched a variable index and variable helix end mill series called the Exocarb-UVX since 2009. UVX’s positive edge geometry with variable helix enables consistent and chatter-free milling. Its special flute shape with ultra-smooth finish further improves chip evacuation, thereby improving stability in slotting ap- plications of stainless steel. OSG has continued rigorous research and development to


further improve performance aſter the initial introduction of the UVX. In this article, we will discuss some of the test results that OSG has conducted specifically for heat- resistant alloys. OSG used the standard UVX as benchmark with two different helix angles, 38° and 65°. Te purpose of the test was to de- termine whether or not a stronger helix angle could suppress heat generation and further prolong tool life. A six-flute UVX with a 10-mm diameter


Spiral flute tap for nickel-based alloys has highly rigid point flutes to resist chipping.


A notable characteristic of the WHR-Ni tap series is its


adoption of OSG’s new HR coating. Tis exhibits a high level of wear-resistance properties against nickel-based alloys and can help attain long tool life when machining abrasive materials. A feature unique to the WHR-Ni-SFT series is its highly


rigid point flutes, which can resist chipping and wear resistant, resulting in stable cutting performance. WHR-Ni-SFT is able to effectively tap unified fine threads,


which are commonly used in the aerospace industry. In terms of tool life, the WHR-Ni-SFT was able to achieve three times the tool life versus a conventional cut tap. When tapping a 3/8-16 UNJC thread with the WHR-Ni-SFT, it was able to achieve 20 holes; while tapping a ¼-28 UNJF, it was able to


148 Aerospace & Defense Manufacturing 2013


was used to machine Inconel 718, with a cutting speed of 262 sfm (8 smpm), feed rate of 25 ipm (635 mm/min), axial depth of cut of 0.200" (5 mm), and radial depth of cut of 0.008" (0.2 mm). At a milling length of 13' (4 m), the two helix angles displayed insignificant tool wear differences. However, greater differ- ences could be observed beginning at a milling length of 20' (6 m). By 46' (14 m) significant wear differences were visible. With the 65° helix angle, the end mill was able to achieve stable and consistent wear from milling length of 20–46'. Te 38° helix angle, on the other hand, suffered greater wear aſter a milling


length of 20'. From this test result, we can conclude that a higher helix angle can lead to less heat generation. In another instance a chip created from a 38° helix angle


had a greenish-blue color while one created from a 65° helix angle appeared to be mostly white, an indication that less heat was generated with the 65° helix angle. In addition, the chip created from the 65° helix angle was long but thin. Te chip created by the 38° helix angle was thicker, further indica- tion that the higher the helix angle the less heat is generated. Although results may vary based on cutting conditions and environment, the helix angle may be a key component to further improving tool life and wear resistanc e for machining materials like heat-resistant alloys. ✈


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328