This page contains a Flash digital edition of a book.
Advancing Fluid-Structure Interaction R&D A recent area of focus for ATA has been developing fluid-


structure interaction simulation methods to evaluate engine nozzle behavior. Because of the wealth of knowledge and data available, the SSME was used as an example to validate these. Previous research at NASA’s Marshall Space Flight Center had never been able to accurately simulate the effect of side loads on the nozzle’s shape. Te analysis always “uncoupled” the fluid dynamics from the structural dynamics because compu- tational fluid dynamics (CFD) took so much more computing power. To work around that, analysts would make certain


CFD model in CHEM, which updates the fluid mesh to reflect the new deformed shape of the nozzle and reanalyzes the fluid mesh accordingly. Tis back-and-forth cycle repeats for every step in the simulation. ATA ran two FSI simulations in sequence to gain a com-


plete look at nozzle dynamics. Te first run determined the shape of the nozzle moments aſter SSME ignition. “We didn’t have the computational resources to simulate those initial seconds when not much was going on, but we needed to get the shape of the engine when things started to get interesting,” said Blades.


“The better your tools are for estimating dynamic loads, the lower the safety factor and the lighter the weight you can achieve.”


assumptions, such as the nozzle being completely rigid and perfectly round. Tese assumptions did not predict the shape of the nozzle during engine firing and did not lead to an ac- curate prediction of the total structural response of the nozzle. ATA decided to test a comprehensive methodology that


would couple structural and fluid dynamics into a full FSI analysis to arrive at a more realistic picture of rocket nozzle dynamics. Te engineers employed the SIMULIA Co-Simula- tion Engine (CSE) capability to link their Abaqus FEA solvers with a flow solver—in this case the Loci/CHEM CFD devel- oped by Mississippi State University (MSU), a code already used by NASA. Starting from a geometric description of the nozzle and a finite element model provided by Rocketdyne, ATA could call upon the wealth of shuttle rocket nozzle data already available from NASA to fine-tune their structural and fluid models. Te CSE was the soſtware “glue” that tightly integrated the


two solvers with mechanisms that provide data synchronization and transfer information for several solvers running concur- rently. It has a mapper to transfer information where the sur- face- and volume-based data overlap, and it has an application programming interface (API) for client simulation programs. Te FEA structural model included the rocket engine


gimbals, the gimbal actuators, the stiffener bands around the nozzle, the main combustion chamber, and the nozzle itself. Te fluid model was based on values for a “single-species gas,” which represented the combined characteristics of the hydro- gen and oxygen in rocket fuel. Te mesh for the fluid domain was created with a mesh generator developed at MSU. During an FSI simulation, the CHEM CFD solver analyzes


its fluid mesh, computes the forces of rocket propulsion on the mesh, and transfers the results of those computations through the SIMULIA CSE to the Abaqus structural solver. Abaqus analyzes the engine structural mesh and generates the structural displacements due to the loads from CHEM. Tese displacements are transferred back through the CSE to the


Te result from the first simulation determined the initial


shape of the nozzle for the second simulation, which gave NASA an idea of how the nozzle deforms, the amount of de- formation, and the side loads involved. Te simulations of the low-frequency structural response of the nozzle were consis- tent with earlier physical observations of the SSME during test and operation. “All of our predictions were in line with what NASA was expecting,” Blades noted.


A First in Rocket Nozzle Simulation “Tese simulations using Abaqus and CHEM CFD early


in the engine-startup sequence represent the first-ever fully coupled, time-accurate, 3D FSI simulation of a rocket engine nozzle,” said Blades. “And while the coupled simulations were more expensive than the CFD-alone simulations NASA currently performs, they weren’t prohibitively so. Te CPU requirements are within reason.” ATA’s next step is to fully validate their FSI simulations


to demonstrate the accuracy of the co-simulation methodol- ogy. “NASA and others in the rocket-engine community may want to use this technology to better represent the physical phenomena in aerospace applications,” said Blades. Te chances of that happening are good: ATA was recently


selected to continue their work within NASA’s SLS program. “Next-generation launch systems will require propulsion systems that deliver high thrust-to-weight ratios, increased trajectory-averaged specific impulse, reliable overall vehicle systems performance, low recurring costs, and other inno- vations to achieve cost and crew-safety goals,” said Blades. “Te existing SSME, on which we based our recent work, will be used for the main stage of this rocket, and NASA is also looking to use our FSI simulation methodology to design the upper-stage engines.” ✈


Article edited by Yearbook Editor Michael Anderson from information provided by Dassault Systèmes.


Aerospace & Defense Manufacturing 2013 89


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328