This page contains a Flash digital edition of a book.
Figure 11. Integration of TARGETS components into the energy model of the ship under consideration


the modularity of the methodology allows the integration and assessment of alternative sources of energy (solar, wind, fuel cells, etc.), which have started receiving attention in the maritime industry recently. Finally,


it should be noted that the


combination of energy audits and ESP has a dual input to the simulation results with DEM. The on-site measurements will be used for the benchmarking of the DEM results and, following this, the ESP will set the basis for alterations that will improve the energy effi ciency of a ship. T ese alternative confi gurations (either in the choice of systems of diff erent capacity or combination of systems) will be assessed with DEM. T e outcome of this work will be compiled in a set of guidelines for the improvement of the energy performance of cargo ships and will constitute one of the major outcomes of TARGETS.


Conclusions Bringing together the principal elements determining the use of energy onboard a cargo ship and integrating them in a holistic simulation TARGETS assess key elements responsible for the use of energy. T e interplay of advanced hydrodynamic tools for resistance and propulsion together with models for engines and auxiliary machinery as well as auxiliary energy converters complements a


comprehensive dynamic energy simulation model for the complete ship. Benchmarking against dedicated energy audits will prove the viability of the concept towards the end of the project. The final dynamic energy simulation


tool to be delivered at the end of the project will be applied through a number of stages during the life cycle of a ship. Starting from the assessment of early designs throughout its operational stages the dynamic energy model will allow assessing energy consumption of a ship and guide users to achieve optimised levels of energy consumption. NA


Acknowledgements The research performed in the TARGETS project is partly funded by the European Commission under Grant 266008 as part of the 7th Framework Surface Transport programme. T e editor wishes to express many thanks to all who have contributed, namely the partners in the project’s Steering Group and all Work Package managers.


References Second IMO GHG Study 2009, Marine Environment Protection Committee Emerson, A. and Sinclair, L (1978), “Propeller design and model experiments”, N.E.C.I.E.S, Vol. 94.


Level Gauging?


Marti, J., Mermiris, G. “TARGETS improves Energy Efficiency of Seaborne Transportation”, Glasgow, IMDC 2012 M Mermiris, D., Vassalos, D., Dodworth, K., Sfakianakis, D. and M Mermiris, G., “Dynamic Energy Modeling – A New Approach to Energy Efficiency and Cost Effectiveness in Shipping Operations”, Proceedings of the Low Carbon Shipping Conference, Glasgow, 2011 Mermiris, D. and Mermiris, G., “Integration of Energy Modules”, Targeted Advanced Research for Global Efficiency of Transportation Shipping (TARGETS, contract no. 266008), Deliverable D5.2.1, 2011 MEPC, ‘Marine Environment Protection Committee,


58th Session’, 2008,


International Maritime Organisation (www. imo.org) Paynter, H. M., “Analysis and Design of Engineering Systems”, Cambridge, MIT Press, 1961 Stück, A., Kroger, J. & Rung, T., (2011) Adjoint-based Hull Design for Wake Optimisation, Schiffstechnik, Vol. 58, No 1. 2011. Renzsch, H: (2012) A simple approach for preliminary assessment of the feasibility of wind-powered auxiliary propulsion, Glasgow, IMDC 2012


Ballast Water Management and Metritape


World’s only Tank Gauge that works well with all Ballast Water Management systems.


See us at SMM: Hall A1 Booth 319 Website: www.jowa-usa.com


The Naval Architect September 2012 89


Feature 2


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132