This page contains a Flash digital edition of a book.
158


Mathematics & Statistics (continued)


Two Pure Mathematics Vacation Scholars


Degree Programmes Offered These range from the highly specialised MMath programmes to the more broadly based Joint degrees with another subject. All programmes are four years long and based upon a flexible and innovative module structure built around a core of essential material.


When you are applying, you may not be sure of the type of programme that will most suit you. If you expect to be well qualified in school mathematics then you should apply for UCAS course code G100 which will give you access to everything we offer.


Mathematically well-qualified entrants can embark upon one of our four-year MMath degrees: Applied Mathematics (G120), Pure Mathematics (G110), Statistics (G300), or just Mathematics (G100), which can include topics from more than one research area. These degrees offer an accelerated sequence of modules in mathematics and/or statistics designed in such a way as to allow some freedom of choice in year one but ensuring that the advanced topics are reached by year four. The course structure is unique within Scotland and maintains the flexibility of the St Andrews structure whilst providing accelerated progression for the well qualified. This is what we call our ‘fast track’. In the final year students undertake a research-based dissertation and select four Advanced modules. Specialist modules currently on offer include:


Applied Mathematics: • Solar Theory


• Fluid Mechanics


Pure Mathematics: • Group Theory • Modern Analysis


Statistics: • Ecological Dynamics • Population Assessment


• Computational Techniques • Analytic Techniques


• Fractal Geometry • Finite Fields


• Bayesian Inference Statistical Modelling





We offer a four-year BSc/MA degree in Mathematics (G101 or G102) and Statistics (G301 or G302) for those not wishing to take the accelerated MMath route. Students take a broad first year programme, which can include up to two other subjects, and the mathematics component concentrates upon reinforcing basic skills and ideas before embarking upon the study of Pure Maths, Applied Maths and/or Statistics in second year.


The second year modules include a central core of material that everyone takes as part of their programme with a wide range of options. These provide the foundation for study in years three and four where there are over 40 modules available for study over the two Honours years.


All the Joint degrees stem from the broad first year and the extensive list of Joint Honours indicates the flexibility of the modular structure and the scope of the opportunities at St Andrews.


First two years of Mathematics or Statistics First Year


Six modules each 20 credits MT1002 Mathematics is compulsory and should be taken as soon as permissible but may need to be preceded by MT1001 depending on previous qualifications


Semester 1 Semester 2 MT1001 or MT1002 (core)


MT1002 or MT2001 (core) or something else


MT1008 (optional)


MT1003 or MT1007 (optional)


Second Year Four modules each of 30 credits


– two or three from the following (depending on the degree intention): MT2001 Mathematics (core to all programmes) but can be taken in either semester to fit around other modules chosen,


MT2002 Algebra and Analysis, MT2003 Applied Mathematics, MT2004 Statistics, MT2005 Discrete Mathematics: Algorithms and Applications


Semester 1 Semester 2


MT2001 (core) MT2003 or MT2004 or MT2005 MT2002 30-credit module in any subject


20-credit module in any subject


20-credit module in any subject


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195