This page contains a Flash digital edition of a book.
Aluminum Processing Molten aluminum has sev-


eral characteristics that can be controlled to maximize cast- ing properties. It is prone to picking up hydrogen gas and oxides in the molten state as well as being sensitive to mi- nor trace elements. Although some decorative or commer- cial castings may have quality requirements that can be met without additional processing, tight melt control and special- ized molten metal processing techniques can help provide enhanced mechanical proper- ties when needed. Alloy Chemistry—During


grains will grow until they impinge on another grain or the mold wall. Grain refining is a treatment process in which nucleating sites (in the form of titanium and boron master alloys) are added to the molten metal to aid the growth of ad- ditional grains. This leads to the creation of more grains, which causes the grains to remain smaller. A sodium or strontium


Fig. 1. The cost of aluminum casting varies with the casting process, as can be seen in the chart above.


molten aluminum processing, the percentages of alloying elements and impurities must be controlled carefully. If they are not, characteristics such as sound- ness, machinability, corrosion resistance, mechanical properties and conductivity are affected adversely. Molten aluminum alloys are prone


to chemistry changes that can be con- trolled during melting and holding. The most significant of these changes is the potential to lose magnesium and pick up iron, which can alter the mechanical properties significantly. If the service requirements of the cast component demand high material properties, these reactions must be controlled through


100 series alloys 200 series alloys 300 series alloys 400 series alloys 500 series alloys 700 series alloys


800 series alloys


facility melting and holding practices. Grain Refining & Modification—


Molten aluminum is sensitive to trace elements, but this sensitivity can be used as an advantage by adding trace amounts of material to create beneficial changes in the casting microstructure. Both grain refining and silicon modification can im- prove mechanical properties in the final component. They also can act as useful tools to optimize properties and heat treatment response to meet specific com- ponent service requirements and aid the development of certain casting properties. During solidification, aluminum freez- es in long columnar grain structures. These


Table 2. Aluminum Alloy “Pink Sheet” Classification System Alloy Series


Principal Alloy Element 99% minimum aluminum Copper


Silicon + Magnesium, Silicon + Copper, or Silicon + Magnesium + Copper Silicon


Magnesium Zinc


Tin (600 series and 900 series are not currently in use.) Fe Cu Mn Mg Zn


addition can be made to mol- ten aluminum to change the morphology (shape) of the silicon crystal. Molt en Me tal Han-


dling—Molten aluminum is prone to absorb hydrogen


from moisture in the atmosphere and other sources, which can lead to de- fects. Hydrogen gas can form pores in the solid castings, and aluminum oxide and other intermetallic impurities can solidify in the castings as inclusions. Both gas porosity and inclusions have a negative impact on casting quality and will prevent castings from meeting high service requirements. Melting prac- tices typically include degassing with an inert purge gas to remove hydrogen and fluxing to clean the molten alu- minum of oxides and other inclusions prior to pouring.


Alloy Selection A number of aluminum alloys are


available to satisfy individual require- ments. Once the casting method is de- termined, the alloy choice is limited be- cause not all alloys can be used with all casting methods. Sometimes, the alloy that shows the best properties on paper may have production characteristics that make it less desirable on an overall basis than other eligible alloys. Therefore, it is best to consult with a metalcasting


Table 3. Aluminum Association Standard Chemical Composition Limits for 356 Aluminum Alloy AA # Product Si


Ti


356.0 356.1 356.2


S&P 6.5-7.5 Ingot 6.5-7.5


A356.0 S&P 6.5-7.5 A356.1 Ingot 6.5-7.5 A356.2 Ingot 6.5-7.5 B356.0 S&P 6.5-7.5 B356.2 Ingot 6.5-7.5 C356.0 S&P 6.5-7.5 C356.2 Ingot 6.5-7.5 F356.0 F356.2


S&P 6.5-7.5 Ingot 6.5-7.5


0.6 0.50


0.25 0.25


Ingot 6.5-7.5 0.13-0.25 0.10 0.20 0.15 0.12 0.09 0.06 0.07 0.04 0.20 0.12


0.20 0.20 0.10 0.05 0.03 0.05 0.03 0.20 0.10


2010 Casting sourCe DireCtory


0.35 0.20-0.45 0.35 0.35 0.25-0.45 0.35 0.05 0.30-0.45 0.05 0.10 0.25-0.45 0.10 0.10 0.30-0.45 0.10 0.05 0.30-0.45 0.05


0.25 0.25 0.20 0.20 0.20 0.20


0.05 0.05 0.05 0.05 0.05


0.05 0.25-0.45 0.05 0.04-0.20 0.05 0.03 0.30-0.45 0.03 0.04-0.20 0.03 0.05 0.25-0.45 0.05 0.04-0.20 0.05 0.03 0.30-0.45 0.03 0.04-0.20 0.03 0.10 0.17-0.25 0.10 0.04-0.20 0.05 0.05 0.17-0.25 0.05 0.04-0.20 0.05


Others


Each 0.05


Total


0.15 remainder 0.15 remainder 0.15 remainder 0.15 remainder 0.15 remainder 0.15 remainder 0.15 remainder 0.10 remainder 0.15 remainder 0.10 remainder 0.15 remainder 0.15 remainder


Metal Casting Design & PurChasing 29 Aluminum


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192