This page contains a Flash digital edition of a book.
ficiently. Creep rate is the rate of stretching at a particular load and temperature, and stress rupture is the time to failure under a given load at a particular temperature. When selecting a creep-resistant material, oxidation or other high-temperature corrosion must be considered because they might limit the service life of the component.


Corrosion Corrosion is a chemical attack that


removes material from an exposed surface. It can be a general loss of material or a lo- calized condition like pitting, cracking or selective attack. Standard tests for corrosion exist, but they rarely replicate service con- ditions or the nature of the environment. Corrosive conditions, such as temperature, pH, oxygen, chlorine and other variables, must be taken into account when selecting the proper cast materials.


Alloy Selection Cast and wrought materials differ in


their structural-direction. The structure of sections of rolled steel is elongated in the direction of rolling. The strength and ductility is improved in that direction but reduced across the rolling direction. The cold rolling of steel also can strengthen the steel but reduces ductility and toughness.


Table 2. Common Steel Alloys for Casting ASTM A915 ASTM A915 Minimum Low Strength


(Grade)


SC1020 SC1030 SC1040 SC8620 SC8630 SC4130 SC4140 SC4330 SC4340


Tensile (ksi) Yield (ksi)


Elongation (%) 65-35-24 65-35-24 70-36-22 80-50-22 80-50-22 80-50-22 90-60-20 90-60-20 90-60-20


Contrarily, the lack of a rolling direction in steel castings gives them uniform prop- erties in all directions. Cast steel grades achieve the same tradeoff through alloy- ing and heat treating. Therefore, casting grades with similar mechanical properties to wrought grades are designated with a different name (ASTM A216 grade WCB is the cast counterpart to wrought 1020). ASTM A915 and A958 use grade names similar to their wrought counterparts. When selecting a steel alloy, the de-


sign limit should be understood first. It is essential to know how and where failures may occur, and selecting a mate-


Minimum High Strength Tensile (ksi) Yield (ksi)


Elongation (%) 70-36-22 80-50-22 90-60-20 115-95-14 150-135-7 150-135-7 165-150-5 210-180-4 210-180-4


Median


Composition Ideal Critical


Diameter (inches) 0.4 0.7 0.9 2.0 3.5 3.0 5.5 6.0 8.0


rial can help address the design limit. Al- loying elements can be added to improve performance; thus, the best practice is starting with a carbon steel and building from there. A material selection guide for five major design applications is shown in Fig. 4. The chart is meant to provide some initial guidance, but it also is important to consult with a metalcast- ing facility to select the right material for each application. This is especially true of higher-alloyed materials (outer rings in the figure). Other alloys may be better, and the alloy and heat treatment can be tailored for specific conditions. Following are descriptions of the common uses for steel castings.


Structural Applications Structural applications are those that


are controlled by strength, deflection and fatigue. Strength and ductility still are the main properties used to designate avail- able steel grades. Increasing the strength of steel is easily achieved through more severe heat treatments or increases in the alloy content. The addition of elements not only increases the strength that an alloy can achieve but also increases the section size of the part, which can be ef- fectively heat treated. The grades in Table 2 are common


alloys of steel available for casting ASTM A915 or A958. The first column is the alloy designation, the second is the minimum requirements for the low- est strength grade commonly available from that alloy, the third column is the minimum requirements for the highest strength grade, and the last column is the calculated largest section that can be effectively heat treated through the sec- tion. Higher-strength alloys have lower ductility but can be heat treated more effectively in larger sections. Higher strength alloys also require more ex- tensive weld procedures and may crack in heat treatment, especially at high carbon contents.


24 Metal Casting Design & PurChasing 2010 Casting sourCe DireCtory


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192