This page contains a Flash digital edition of a book.
processes can be used. Cooling slowly in the furnace is called annealing and is not commonly used, except as an intermedi- ate treatment to allow some grades to be machined. Cooling in still air is called normalizing and is the most common treatment, providing good strength and ductility. Rapidly cooling in water or oil is known as quenching. Although steel must be reheated or tempered after quenching to improve ductility, quenching and tempering give the high- est strength available from any grade. A wide range of final strength levels with quenched and tempered grades can be achieved by varying tempering time and temperature.


Strain Strain is the amount of stretching in


a loaded component. Steel can be bent, twisted or stretched without breaking, and this ability to absorb strain without fracturing is critical to safety and reli- ability. Strain is measured by determin- ing the amount of permanent stretch (plastic deformation) in the tensile bar test. The increase in length is elongation, and the change in area at the point of fracture of the bar is reduction of area. The ability to stretch without cracking is called ductility. Although many designers think in


terms of the material’s strength, most steel production is in the lower strength grades, which have good ductility. Carbon content and heat treatment also influence strength and ductility, as shown in Fig. 1. Carbon contents typically are kept well below 0.3% to avoid problems with cracks in heat treating or welding. The ratio of stress to strain is the elastic


modulus, and the data is derived from a tensile test. The modulus of elasticity is based solely on the material; heat treat- ment does not affect modulus. Steels have a modulus of approximately 30 x 106


psi,


which is the highest modulus of elasticity of commonly used cast or wrought mate- rials. The larger the modulus, the smaller the deflection of a part. Therefore, steel provides good stiffness.


Fatigue Fatigue is the failure of a component


when it is repeatedly loaded, even at levels well below the yield strength of the steel. It is measured by repeated loading of several bars at different stress levels and determining the number of cycles until failure. A typical result of the stress versus cycles is shown in Fig. 2. Low-cycle fatigue is below 100,000 loadings where ductility is needed. High-cycle fatigue is normally above


22 Metal Casting Design & PurChasing 2010 Casting sourCe DireCtory


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192