This page contains a Flash digital edition of a book.
Design engineers must be famil- iar with what alloys work with the available molding processes. Aluminum, shown during a pouring operation, is a versatile material that can be cast in most types of molds.


than silica for specialty ap- plications;


• savings in material usage through hollow cores and thin shell molds. Nobake or Airset Systems—


In order to improve productiv- ity and eliminate the need for heat or gassing to cure mold and core binders, a series of resin systems referred to as nobake or airset binders was developed. In these systems, sand is mixed with


one or two liquid resin components and a liquid catalyst component. When the resin(s) and catalyst combine, a chemi- cal reaction begins to harden (cure) the binder. The curing time can be lengthened or shortened based on the amount of


The nobake process provides


the following positive features: • the capability to use wood and, in some cases, plastic patterns and coreboxes.


• good casting dimensional tolerances due to the ri- gidity of the mold;


• good casting finishes; •


typically easy shakeout (the separation of the cast- ing from the mold after solidification is complete);


• the abiliy to store cores and molds indefinitely.


Unbonded Sand Processes


catalyst used and the temperature of the refractory sand. The mixed sand is placed against


the pattern or into the corebox. Al- though the sand mixtures have good flowability, some form of compaction (usually vibration) is used to provide densification of the sand in the mold/ core. After a period of time, the core/ mold has cured sufficiently to allow stripping from the corebox or pattern without distortion. The cores/molds are then allowed to sit and thoroughly cure. After curing, they can accept a refractory wash or coating that provides a better sur- face finish on the casting and protects the sand in the mold from the heat and erosive action of the molten metal as it enters the mold cavity.


Unlike the sand casting processes that


use various binders to hold the sand grains together, two processes use unbonded sand as the molding media. These include the lost foam process and the less common V-Process. Lost Foam Casting—In this process,


the pattern is made of expendable poly- styrene (EPS) beads. For high-production runs, the patterns can be made by injecting EPS beads into a die and bonding them together using a heat source, usually steam. For shorter runs, pattern shapes are cut from sheets of EPS using conventional woodworking equipment and then as- sembled with glue. In either case, internal passageways in the casting, if needed, are not formed by conventional sand cores but are part of the mold itself. The polystyrene pattern is coated with


a refractory coating, which covers both the external and internal surfaces. With the gating and risering system attached to the pattern, the assembly is suspended


In high-production lost foam casting, foam patterns are molded and assembled on a cluster, coated with a refractory, placed in a flask and surrounded with unbonded sand. Molten metal then is poured over the pattern, evaporating the foam.


8


Metal Casting Design & PurChasing


2010 Casting sourCe DireCtory


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192