Iron Alloys
The American Foundry Society Technical Dept., Schaumburg, Illinois George M. Goodrich, Professional Metallurgical Services, Buchanan, Michigan
I
ron castings are produced by a va- riety of molding methods and are available with a wide range of prop- erties. Cast iron is a generic term that designates a family of metals.
To achieve the best casting for a particular application at the lowest cost consistent with the component’s requirements, it is necessary to have an understanding of the six types of cast iron: • gray iron; • ductile iron; • compacted graphite iron (CGI); • malleable iron; • white iron; • alloyed iron. Table 1 lists the typical composition
ranges for common elements in five of the six generic types of cast iron. The classifica- tion for alloyed irons has a wide range of base compositions with major additions of other elements, such as nickel, chromium, molybdenum or copper. The basic strength and hardness of all iron
alloys is provided by the metallic structures containing graphite. The properties of the
Table 1. Composition Range for Un-Alloyed Cast Irons (in %) Iron Family Gray
Ductile CGI
Malleable White
Carbon 2.5-4.2 3-4
2.5-4
2.2-2.8 1.8-3.6
Silicon 1-3
1.8-3 1.5-3
1.2-1.9 0.5-2
iron matrix can range from those of soft, low-carbon steel (18 ksi/124 MPa) to those of hardened, high-carbon steel (230 ksi/1,586 MPa). The modulus of elasticity varies with the class of iron, shape (sphericity) and vol- ume fraction of the graphite phase (percent free carbon). Because of their relatively high silicon
content, cast irons inherently resist oxidation and corrosion by developing a tightly adher- ing oxide and subscale to repel further attack. Iron castings are used in applications where this resistance provides long life. Resistance to heat, oxidation and corrosion are appre- ciably enhanced with alloyed irons. Properties of the cast iron family can be adjusted over a wide range and enhanced
Manganese 0.15-1 0.1-1
0.10-1
0.15-1.2 0.15-0.8
Sulfur
0.02-0.25 0.01-0.03 0.01-0.03 0.02-0.2 0.02-0.2
Phosphorus 0.02-1
0.01-0.1 0.01-0.1 0.02-0.2 0.02-0.2
by heat treatment. Annealing produces a matrix of soft machinable ferrite. In limited situations, this annealing can be accomplished at sub-critical temperatures. Heating above this critical temperature takes the carbon from the graphite and places it in the matrix. This engineered material can be through-hardened and tempered using conventional heat treating or surface hardening. These adjustments create the different members of the cast iron family. Gray iron—Flake graphite provides
gray iron with unique properties (such as excellent machinability) at hardness levels that produce superior wear-resistant characteristics, the ability to resist galling
The Agri-Speed Hitch helps farmers avoid the dangerous area between a tractor and trailer. The new cast ductile iron hitch (bottom right) is more versatile than the previous steel weldment version (top right) and can be used with both larger and smaller machinery.
14 Metal Casting Design & PurChasing 2010 Casting sourCe DireCtory
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192