search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
SPECTROSCOPY FEATURE


each wavelength (microwatts/cm2


/nm),


correlated colour temperature, colour co-ordinates, colour rendering, absolute colour and difference in colour. Langston commented: ‘Taking


spectroscopy out of the lab and into the hands of non-experts is a huge driver for spectrometry technology.’ Equipment such as Ocean Optics’ new handheld device gives horticulturists a practical way to monitor the emission spectrum of LEDs over large areas, allowing them to correlate growth patterns of all their produce with illumination spectra. Ocean Optics’ crossed Czerny-Turner based system designs are able to measure a large range of wavelengths concurrently, making them ideal for taking snapshots out in the field. According to Langston, field-based designs also need to be very rugged and robust, and should contain no moving parts. The company has recently increased the practicality of its field-based spectrometers with its most recent system, the Ocean-FX, by adding on-board battery packs and WiFi capabilities, increasing the portability of the device and ease of data transfer when taking measurements. Spectrometers are not only used out


in the field within horticulture, but also across the entire production chain of horticultural lighting, with their place in the chain determining their build and specification. The spectroscopy equipment used in horticultural LED quality control labs are designed for precision analysis in benchtop environments. ‘Out in the field, a lot of what we call old school lab spectroscopy equipment wouldn’t be suitable,’ said Langston. ‘In a lab, we offer systems that feature alternative, more sensitive designs, such as monochromators, or


even Fourier transform spectrometers that move more slowly through a range of wavelengths.’ These systems are deployed when completely new diodes are under development by LED manufacturers, which undergo rigorous testing before they can be produced on larger scales. Ocean Optics’ standard spectrometers


are also being deployed in horticulture, although in different formats to its handheld or desktop systems. ‘What our customers have done is integrate our spectrometers into a range of different specialised systems,’ he explained. ‘We’ve had customers use them on drones, with one spectrometer pointing up and one pointing down. These airborne systems can be used to fly over crops to obtain measurements from two perspectives in quick succession. Ground-based measurements have also been performed by people integrating our devices onto irrigation systems and harvesters.’ Further customers have even begun integrating one of the company’s smaller spectrometers, the Pixelsensor, into the horticultural lighting systems themselves. In situ spectrometry deployments such as this enable measurements to be taken around the clock without technicians having to travel between lighting modules. Ger Loop, production manager at


Avantes, believes that spectrometers are on the path to becoming smaller and more affordable, which will open up new opportunities such as integrating spectrometers into street lighting in order to provide active feedback.


Flash inspection According to Langston, across the whole lighting industry – not just in horticulture – a shift has been occurring towards


Handheld spectroscopy systems provide an easy, portable way for horticulturists to check that their LED lighting systems are delivering the correct light recipes


more capable tools for analysing light. ‘Typically, as LEDs have swept the world, because you’ve got different shapes, narrow-band illumination and sharper spectral peaks, the old tools don’t measure accurately anymore,’ he said. ‘This is what is driving the underlying need for more spectroscopy and spectrometer systems.’ Development is also being driven


at a performance level by demand from manufacturers of LEDs, which use spectroscopy for quality control purposes in production lines, according to Langston. ‘We developed a custom design spectroscopy system for an LED manufacturer that wanted to be able to g


EleVac_LFWbg_1503 1


8/25/14 5:02 PM


Ocean Optics


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48