TECHNOLOGY I INVERTERS
can be used in are extremely diverse. Electric motors are used everywhere in industry, including in the food and beverage sector for anything from fans, ventilators or conveyor belts to pumps and refrigeration vans. That being said, it’s obvious how inverter failure or breakdown can cause production interruptions and significant financial losses.
The most common cause of failure or malfunctioning for inverters is an improper installation, often a combination of not following the user manual recommendation and selecting inappropriate cable type, gauges or in line fuses. Once you’ve passed the installation test and your product is up and running, there are a few things you will want to look out for.
Capacitor wear
The first reason for inverter failure is electro-mechanical wear on capacitors. Inverters rely on capacitors to provide a smooth power output at varying levels of current; however electrolytic capacitors have a limited lifespan and age faster than dry components. This in itself can be a cause of inverter failure.
Capacitors are also extremely temperature sensitive. Temperatures over the stated operating temperature, often caused by high current, can reduce the life of the component. However, as the electrolytes evaporate faster at higher temperatures, capacitor life increases when they are run at lower than operating temperature.
Happily, keeping a consistent maintenance regime and regularly replacing capacitors avoids most problems caused by wear and tear.
Overuse We mentioned how sometimes process managers might forget about inverters. This happens more often than you think. Using inverters beyond their operating limit, either by choice or due to oversight or lack of knowledge, can contribute to inverter bridge failure. Using any component at a rating higher than its operating limit will decrease its lifespan and lead to failure, so avoiding this issue simply comes down to checking that all inverters are being run correctly.
Over- and under-voltage The next two issues that can cause inverter failure are over-current and over-voltage. If either current or voltage increases to a level that the inverter is not rated for, it can cause damage to components in the device, most frequently the inverter bridge. Often this damage will be caused by the excess heat generated by the spike in voltage or current.
Over-current can be avoided with fuses or circuit breakers, but avoiding over-voltage can be tricky. Sometimes voltage spikes are man-made, but they can also be caused by lightning or solar flares, which are difficult to avoid if, like us, you live on planet Earth.
Ultrasonic vibrations The final problem on the list is one that contributes to the mechanical stress placed on an inverter. Ultrasonic vibrations originating in the cores of inductive components cause friction, adding to the unwanted heat generated by the device and further damaging components in the inverter.
As with any electrical equipment, maintenance is the key and mustn’t be overlooked. With time, electrical
connections tend to loosen or corrode. If the inverter is still functional, a maintenance manager might be tempted to simply ignore these signs of wear and tear. However, as the saying goes, it’s better to be safe than sorry, so cleaning the terminals in the battery box, fuses and the inverter connection at least once every six months is crucial.
Furthermore, the cleaning process has to be performed correctly, or it might end up doing more damage than good. Ideally, a wire brush and grease dissolvent agent should be used. After cleaning and maintenance is complete, a protective sealant must also be used on all battery terminals.
When deciding which protective coating to use, avoid grease-based ones, because they tend to attract contaminants like dust, which leads to an increased decay of the connections, while also hiding the degradation from further visual inspections.
Although correct installation and maintenance can significantly prolong the lifespan of inverters, when failure does happen, there are a few routes you can take. Especially for older or obsolete models, it might be worth considering the purchase of a refurbished part.
Purchasing carefully refurbished parts from trusted suppliers is an excellent way to minimise your costs and ensure your operation is up and running in no time. When European Automation buys a drive for future re-sale, we repair or refurbish it so it’s completely problem-free.
So, don’t suffer in silence. If you are baffled by a broken drive, confused by the countless ways to control an electric motor or even just perplexed by Prince’s name choices, get in contact with European Automation. We promise not to change our name to a symbol.
©2014 Permission required. Angel Business Communications Ltd.
Issue V 2014 I
www.solar-international.net 59
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80