Industry Focus Oil & Gas
he demand for corrosion resistant alloy (CRA) clad pipes is expected to grow in deepwater offshore pipelines, risers and flowlines, as well as pipes for onshore applications in oil, gas and petrochemical indus- tries. This is because more than 80% of developing oil and gas fields demon- strate corrosive properties.
CRA clad pipes are protected from the production fluid by a liner that is mechanically bonded to the inside of the pipe. Production fluids (oil and gas) often contain a high sulphur or CO2
Time to check your wrinkles T
content that requires the use of materials that are suitable for corro- sive environments. When the sulphur and CO2
content are too high for the corrosion resistant properties of stan- dard carbon-steel pipes, a CRA liner is often employed.
Once oil and gas pipes have been manufactured and lined, they are often subjected to bending or reeling trials in order to verify whether the CRA liner is likely to buckle or wrin- kle (and the extent of this) due to the high bending stresses involved. These trials normally take place during the bending process itself after the pipes have been lined. This simulates the pipe being continuously bent and straightened whilst reeled and unreeled from the spool onboard an ocean pipelaying vessel.
By inspecting the inside profile of these pipes, companies can verify whether the liner has wrinkled or buckled during the bending trials (and the extent of this), or whether the liner is likely to wrinkle under repeat bend- ing and straightening aboard the pipelaying vessel.
Moving with the times Traditionally, inspecting the inside of lined pipes has been done manually or by projecting a laser ring around the inside of the pipe and then estimating measurements based on a camera view of the ring. These systems are rela- tively crude and much more sophisti- cated, reliable measurement systems are now available.
For example, OMS has developed various systems for inspecting the inside profile of CRA lined pipe. Since 2002, OMS has been perform- ing pipe bending trial measurement surveys for the likes of BP, Technip,
20
Above and below: for deepwater offshore pipelines, risers and flowlines, as well as pipes for onshore
applications in oil, gas and
petrochemicals, the demand for CRA (corrosion resistant alloy) clad pipes is expected to grow, with more than 80% of developing oil and gas fields demonstrating corrosive properties
Subsea 7 and Exxon Mobil. These surveys range from relatively simple ovality measurements of pipes, through to much more detailed 3D profile surveys.
Automatic Pipe Checker OMS’ system for pipe bending trials, the Automatic Pipe Checker system, uses a laser profile measurement probe, which is part of a fully cali- brated measurement module, which in turn is mounted to a rotary arm. The system uses a precision linear slide, which moves down the inside of the pipe, stopping at regular intervals to measure the circular profiles (inside diameter cross-sections). In this way, entire sections of pipe can be profiled within a consistent coordinate frame. System accuracy varies from 0.5mm to 0.05mm, depending on the pipe and customer requirements.
The internally calibrated laser pro- file measurement module is able to record up to 2,048 measurements per ID cross-section (which are typically smoothed out and reduced to 600 points). Smoothing of data points is critical, since this will remove any outliers caused by features such as debris inside the pipe. Any unwanted features can also be manu- ally edited such as debris on the wall of the pipe.
For typical bending trials, pipe sizes range from 125mm up to 1,200mm. Often, measurements are confined to a small area of the pipe, but at other times, these can include the complete length of a pipe. Each profile takes about 15 seconds to measure. It takes another 15 to 30 seconds to review the profile and move on to the next mea- suring position. For example, full mea- surement of an eight metre long pipe at 20mm intervals will require 400 sepa-
The latest high precision laser profile measurement tools and video inspection equipment are helping to detect the presence of wrinkles or buckling in CRA corrosion resistant alloy lined pipes. Hugh Davies, director of client solutions at Optical Metrology Services (OMS), takes up the story
rate measurements. These will take 400 x 45 seconds to complete or around five hours of continuous work. Accounting for breaks and data cali- bration checks, one eight metre long pipe normally takes one day to arrive, set-up and measure.
These overlapping profile measure- ments enable pipe sections to be ‘stitched together’ or mapped in the Automatic Pipe Checker software to form a consistent 3D model of the inte- rior of the pipe. Comprehensive sur- veying of the internal profile of pipes can be carried out every 1mm through the pipe - at every stage of a project if the customer requires. Measured data can then be mapped into accurate 3D CAD models in a format (e.g. SolidWorks) that the customer requires in order to drive further analysis, for example, Finite Element Modelling. This, in turn, can facilitate part of a life prediction for the pipe. The Automatic Pipe Checker system is fully calibrated and mea- surements are traceable to National Standards. OMS staff carrying out the inspections will typically be respon- sible for all stages of the measure- ment survey - setting the tool, calibrating the tool, measuring the pipes, verifying the tool (calibration checks), and then checking the mea- surement data itself.
In addition to laser profile measure- ment tools, OMS also uses other inspection techniques to supplement this. Video inspection tools can be used to visually inspect the internal profile of pipes. This equipment typi- cally comprises a tractor and camera systems, together with LED lighting (end and side lighting) and digital video recording capability.
Using several techniques to inspect the lined pipes enables OMS to supply sophisticated geometrical analysis of the measurement data, including detection of features, analysis of wrin- kles or buckling of the liner, 3D model- ling of features, and differential analysis (i.e. comparisons between dif- ferent measurement surveys). Colour visualisations of radial deviation can also be provided.
Optical Metrology Services (OMS)
www.omsmeasure.com T: 01279 656 038
Enter 209 JULY/AUGUST 2013 Automation
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44